308 research outputs found

    A Development of Dynamic Deforming Algorithms for 3D Shape Modeling with Generation of Interactive Force Sensation

    Get PDF
    PROCEEDINGS OF IEEE VIRTUAL REALITY ANNUAL INTERNATIONAL SYMPOSIU

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality Environment

    Get PDF
    This thesis presents a computational framework for representing, manipulating and merging rigid and deformable freeform objects in virtual reality (VR) environment. The core algorithms for collision detection, merging, and physics-based modeling used within this framework assume that all 3D deformable objects are B-spline surfaces. The interactive design tool can be represented as a B-spline surface, an implicit surface or a point, to allow the user a variety of rigid or deformable tools. The collision detection system utilizes the fact that the blending matrices used to discretize the B-spline surface are independent of the position of the control points and, therefore, can be pre-calculated. Complex B-spline surfaces can be generated by merging various B-spline surface patches using the B-spline surface patches merging algorithm presented in this thesis. Finally, the physics-based modeling system uses the mass-spring representation to determine the deformation and the reaction force values provided to the user. This helps to simulate realistic material behaviour of the model and assist the user in validating the design before performing extensive product detailing or finite element analysis using commercially available CAD software. The novelty of the proposed method stems from the pre-calculated blending matrices used to generate the points for graphical rendering, collision detection, merging of B-spline patches, and nodes for the mass spring system. This approach reduces computational time by avoiding the need to solve complex equations for blending functions of B-splines and perform the inversion of large matrices. This alternative approach to the mechanical concept design will also help to do away with the need to build prototypes for conceptualization and preliminary validation of the idea thereby reducing the time and cost of concept design phase and the wastage of resources

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    Design and Implementation of an Interactive Surface System with Controllable Shape and Softness

    Get PDF
    「平面的で硬い」という従来のディスプレイの物理的制約は、ユーザが3次元的な形状を有するデータを扱う場合や触覚的な情報を有するデータと対話する場合に様々な制限を与えている. また, 平面的なディスプレイ上で複雑な立体形状を閲覧・モデリングするためには, 頻繁な視点移動や複雑な頂点操作等を伴うGUI操作が必要である. このような問題を解決するため, 砂, 粘土のような非平面的・柔軟な素材をサーフェスに取り入れて, 従来のディスプレイにできない異なるインタラクションを可能にした研究が行われていたが, 一つのデバイスで異なる物理性質を表現できるディスプレイはあまり研究されていない.本研究は細かなパーティクルと気圧操作による硬さ制御技術に着目し, 硬度可変ディスプレイの実装を行った. 硬さ制御によって, 軟らかいときに形状の変形や, 用途に応じて形状を維持することもできる.このディスプレイの可能性を探るため, 硬さ制御を利用したモデリングアプリケーションを開発した. このアプリケーションでは, モデリング操作に応じて, 適切な硬さを選択する事ができ, モデルが完成した時にディスプレイを硬化し形状を維持させることが可能である.また, 深度カメラを用いることで, タッチ入力による彩色が可能になり, 作成したモデルをスキャンし, CADデータとして保存することもできる. さらに, 3Dプリンターで出力することも可能にした.このシステムは、従来のモデリング操作をより直感的する事ができるが, システム単独で形状を生成することができない. そこで, 本研究では粒子運搬技術を用いて, ディスプレイの形状アクチュエーション手法も提案する. この手法では, モデルの大まかな形状を生成することで, ユーザは形状の細部を自由にカスタマイズすることができる. この手法は, 硬さ制御技術と同じくパーティクルと空気アクチュエーションを用いているため, 低コストかつシンプルなシステムで実現することができる.電気通信大学201

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Advancing performability in playable media : a simulation-based interface as a dynamic score

    Get PDF
    When designing playable media with non-game orientation, alternative play scenarios to gameplay scenarios must be accompanied by alternative mechanics to game mechanics. Problems of designing playable media with non-game orientation are stated as the problems of designing a platform for creative explorations and creative expressions. For such design problems, two requirements are articulated: 1) play state transitions must be dynamic in non-trivial ways in order to achieve a significant level of engagement, and 2) pathways for players’ experience from exploration to expression must be provided. The transformative pathway from creative exploration to creative expression is analogous to pathways for game players’ skill acquisition in gameplay. The paper first describes a concept of simulation-based interface, and then binds that concept with the concept of dynamic score. The former partially accounts for the first requirement, the latter the second requirement. The paper describes the prototype and realization of the two concepts’ binding. “Score” is here defined as a representation of cue organization through a transmodal abstraction. A simulation based interface is presented with swarm mechanics and its function as a dynamic score is demonstrated with an interactive musical composition and performance
    corecore