3,103 research outputs found

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Networked control system for electrohydraulic flow control positioner using Neural Controller and Collaborative Network

    Get PDF
    Electrohydraulic flow control valve is an essential element of an automated process industry where fluid control is applicable. The use of conventional controllers overan IP-communication network for controlling electrohydraulic flow control positioner to regulate mainline pressure and flow rate in pipeline transportation of petroleum products between two stations where downstream pressure of the pumping station fluctuates significantlyposes a problem of instability on the flowrate and the mainline pressure of the pipeline. Additionally, the effect of network induced, time-varying delay between the controller and the electrohydraulic flow control valves induces a problem of poor quality of control and inefficient system performance of the control loop. In this paper, we presented an application of neural network in processflow control using an electrohydraulic valve positionerand proposed a concept of collaborative network for networked control systems over IP-based networks.peer-reviewe

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control

    Adaptive neural network cascade control system with entropy-based design

    Get PDF
    A neural network (NN) based cascade control system is developed, in which the primary PID controller is constructed by NN. A new entropy-based measure, named the centred error entropy (CEE) index, which is a weighted combination of the error cross correntropy (ECC) criterion and the error entropy criterion (EEC), is proposed to tune the NN-PID controller. The purpose of introducing CEE in controller design is to ensure that the uncertainty in the tracking error is minimised and also the peak value of the error probability density function (PDF) being controlled towards zero. The NN-controller design based on this new performance function is developed and the convergent conditions are. During the control process, the CEE index is estimated by a Gaussian kernel function. Adaptive rules are developed to update the kernel size in order to achieve more accurate estimation of the CEE index. This NN cascade control approach is applied to superheated steam temperature control of a simulated power plant system, from which the effectiveness and strength of the proposed strategy are discussed by comparison with NN-PID controllers tuned with EEC and ECC criterions

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    DEVELOPMENT & PERFORMANCE EVALUATION OF HYBRID NN – PID CONTROLLER FOR DC SERVOMOTOR

    Get PDF
    The project focuses on position control of the DC Servo Motor MS150 Servomotor Modular. The objectives of the project is to design and develop an advanced control strategy for the use in the servomotor as well as to observe, evaluate and compare the controller performances of a proposed advanced controller – Artificial Neural Network (ANN) with the conventional controller that is Proportional – Integral – Derivative (PID) Control. This approach is selected to investigate and evaluate the conventional method in controlling the position of DC servomotor due to the advantage of cost reduction, simplicity, flexibility and also provides better performance. Based on the information obtained from servomotor modular, the controllers are designed and simulated using MATLAB/SIMULINK to analyze their initial performance. Finally, the performance of the controllers are compared and evaluated and the validation is done in terms of time response, overshoot response and steady – state error

    A Predictive Fuzzy-Neural Autopilot for the Guidance of Small Motorised Marine Craft

    Get PDF
    This thesis investigates the design and evaluation of a control system, that is able to adapt quickly to changes in environment and steering characteristics. This type of controller is particularly suited for applications with wide-ranging working conditions such as those experienced by small motorised craft. A small motorised craft is assumed to be highly agile and prone to disturbances, being thrown off-course very easily when travelling at high speed 'but rather heavy and sluggish at low speeds. Unlike large vessels, the steering characteristics of the craft will change tremendously with a change in forward speed. Any new design of autopilot needs to be to compensate for these changes in dynamic characteristics to maintain near optimal levels of performance. This study identities the problems that need to be overcome and the variables involved. A self-organising fuzzy logic controller is developed and tested in simulation. This type of controller learns on-line but has certain performance limitations. The major original contribution of this research investigation is the development of an improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy Logic Controller (PSoFLC). The novel feature of the control algorithm is that is uses a neural network as a predictive simulator of the boat's future response and this network is then incorporated into the control loop to improve the course changing, as well as course keeping capabilities of the autopilot investigated. The autopilot is tested in simulation to validate the working principle of the concept and to demonstrate the self-tuning of the control parameters. Further work is required to establish the suitability of the proposed novel concept to other control

    Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure for Quadcopter Control

    Full text link
    Proportional-Integrator-Derivative (PID) controller is used in a wide range of industrial and experimental processes. There are a couple of offline methods for tuning PID gains. However, due to the uncertainty of model parameters and external disturbances, real systems such as Quadrotors need more robust and reliable PID controllers. In this research, a self-tuning PID controller using a Reinforcement-Learning-based Neural Network for attitude and altitude control of a Quadrotor has been investigated. An Incremental PID, which contains static and dynamic gains, has been considered and only the variable gains have been tuned. To tune dynamic gains, a model-free actor-critic-based hybrid neural structure was used that was able to properly tune PID gains, and also has done the best as an identifier. In both tunning and identification tasks, a Neural Network with two hidden layers and sigmoid activation functions has been learned using Adaptive Momentum (ADAM) optimizer and Back-Propagation (BP) algorithm. This method is online, able to tackle disturbance, and fast in training. In addition to robustness to mass uncertainty and wind gust disturbance, results showed that the proposed method had a better performance when compared to a PID controller with constant gains.Comment: 7 pages, 18 figures, The 30th Annual International Conference of Iranian Society of Mechanical Engineer
    corecore