31 research outputs found

    Low-voltage Low-power Switched-Capacitor ?S Modulator Design

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Analog and mixed-signal circuitry for system-assisted high-speed I/O links

    Get PDF
    The state-of-the-art design methodology for high-speed I/O links is to specify component-level design requirements to achieve high-fidelity component-level performance. While designing each component in the link with high fidelity guarantees a reliable link, it does not inherently optimize the link for metrics such as the power, design complexity, or bit error rate performance. Recently, due to the increased demand for data bandwidth in backplane I/O, a system-assisted design methodology has been developed to optimize the system for a given set of metrics. By optimizing on the system level rather than the component level, the performance at the component level can be reduced from high quality to sufficient when the component is deployed within the I/O link. The new system-level design methodology encourages the utilization of novel circuit architectures. In this dissertation, novel analog and mixed-signal circuitry for system-assisted high-speed I/O links is presented. The novel circuitry expands upon traditional analog and mixed-signal circuit architectures in order to achieve system-level design goals and requirements without significant power or area overhead

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Concepts for smart AD and DA converters

    Get PDF
    This thesis studies the `smart' concept for application to analog-to-digital and digital-to-analog converters. The smart concept aims at improving performance - in a wide sense - of AD/DA converters by adding on-chip intelligence to extract imperfections and to correct for them. As the smart concept can correct for certain imperfections, it can also enable the use of more efficient architectures, thus yielding an additional performance boost. Chapter 2 studies trends and expectations in converter design with respect to applications, circuit design and technology evolution. Problems and opportunities are identfied, and an overview of performance criteria is given. Chapter 3 introduces the smart concept that takes advantage of the expected opportunities (described in chapter 2) in order to solve the anticipated problems. Chapter 4 applies the smart concept to digital-to-analog converters. In the discussed example, the concept is applied to reduce the area of the analog core of a current-steering DAC. It is shown that a sub-binary variable-radix approach reduces the area of the current-source elements substantially (10x compared to state-of-the-art), while maintaining accuracy by a self-measurement and digital pre-correction scheme. Chapter 5 describes the chip implementation of the sub-binary variable-radix DAC and discusses the experimental results. The results confirm that the sub-binary variable-radix design can achieve the smallest published current-source-array area for the given accuracy (12bit). Chapter 6 applies the smart concept to analog-to-digital converters, with as main goal the improvement of the overall performance in terms of a widely used figure-of-merit. Open-loop circuitry and time interleaving are shown to be key to achieve high-speed low-power solutions. It is suggested to apply a smart approach to reduce the effect of the imperfections, unintentionally caused by these key factors. On high-level, a global picture of the smart solution is proposed that can solve the problems while still maintaining power-efficiency. Chapter 7 deals with the design of a 500MSps open-loop track-and-hold circuit. This circuit is used as a test case to demonstrate the proposed smart approaches. Experimental results are presented and compared against prior art. Though there are several limitations in the design and the measurement setup, the measured performance is comparable to existing state-of-the-art. Chapter 8 introduces the first calibration method that counteracts the accuracy issues of the open-loop track-and-hold. A description of the method is given, and the implementation of the detection algorithm and correction circuitry is discussed. The chapter concludes with experimental measurement results. Chapter 9 introduces the second calibration method that targets the accuracy issues of time-interleaved circuits, in this case a 2-channel version of the implemented track-and-hold. The detection method, processing algorithm and correction circuitry are analyzed and their implementation is explained. Experimental results verify the usefulness of the method

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    Get PDF
    In wireless communication industry, the convergence of stand-alone, single application transceiver IC’s into scalable, programmable and platform based transceiver ICs, has led to the possibility to create sophisticated mobile devices within a limited volume. These multi-standard (multi-mode), MIMO, SDR and cognitive radios, ask for more adaptability and flexibility on every abstraction level of the transceiver. The adaptability and flexibility of the receive paths require a digitized receiver architecture in which most of the adaptability and flexibility is shifted in the digital domain. This trend to ask for more adaptability and flexibility, but also more performance, higher efficiency and an increasing functionality per volume, has a major impact on the IP blocks such systems are built with. At the same time the increasing requirement for more digital processing in the same volume and for the same power has led to mainstream CMOS feature size scaling, leading to smaller, faster and more efficient transistors, optimized to increase processing efficiency per volume (smaller area, lower power consumption, faster digital processing). As wireless receivers is a comparably small market compared to digital processors, the receivers also have to be designed in a digitally optimized technology, as the processor and transceiver are on the same chip to reduce device volume. This asks for a generalized approach, which maps application requirements of complex systems (such as wireless receivers) on the advantages these digitally optimized technologies bring. First, the application trends are gathered in five quality indicators being: (algorithmic) accuracy, robustness, flexibility, efficiency, and emission, of which the last one is not further analyzed in this thesis. Secondly, using the quality indicators, it is identified that by introducing (or increasing) digitization at every abstraction level of a system, the advantages of modern digitally optimized technologies can be exploited. For a system on a chip, these abstraction levels are: system/application level, analog IP architecture level, circuit topology level and layout level. In this thesis, the quality indicators together with the digitization at different abstraction levels are applied to S¿ modulators. S¿ modulator performance properties are categorized into the proposed quality indicators. Next, it is identified what determines the accuracy, robustness, flexibility and efficiency of a S¿ modulator. Important modulator performance parameters, design parameter relations, and performance-cost relations are derived. Finally, several implementations are presented, which are designed using the found relations. At least one implementation example is shown for each level of digitization. At system level, a flexible (N)ZIF receiver architecture is digitized by shifting the ADC closer to the antenna, reducing the amount of analog signal conditioning required in front of the ADC, and shifting the re-configurability of such a receiver into the digital domain as much as possible. Being closer to the antenna, and because of the increased receiver flexibility, a high performance, multi-mode ADC is required. In this thesis, it is proven that such multi-mode ADCs can be made at low area and power consumption. At analog IP architecture level, a smarter S¿ modulator architecture is found, which combines the advantages of 1-bit and multi-bit modulators. The analog loop filter is partly digitized, and analog circuit blocks are replaced by a digital filter, leading to an area and power efficient design, which above all is very portable, and has the potential to become a good candidate for the ADC in multimode receivers. At circuit and layout level, analog circuits are designed in the same way as digital circuits are. Analog IP blocks are split up in analog unit cells, which are put in a library. For each analog unit cell, a p-cell layout view is created. Once such a library is available, different IP blocks can be created using the same unit cells and using the automatic routing tools normally used for digital circuits. The library of unit cells can be ported to a next technology very quickly, as the unit cells are very simple circuits, increasing portability of IP blocks made with these unit cells. In this thesis, several modulators are presented that are designed using this digital design methodology. A high clock frequency in the giga-hertz range is used to test technology speed. The presented modulators have a small area and low power consumption. A modulator is ported from a 65nm to a 45nm technology in one month without making changes to the unit cells, or IP architecture, proving that this design methodology leads to very portable designs. The generalized system property categorization in quality indicators, and the digitization at different levels of system design, is named the digital design methodology. In this thesis this methodology is successfully applied to S¿ modulators, leading to high quality, mixed-signal S¿ modulator IP, which is more accurate, more robust, more flexible and/or more efficient

    Data acquisition techniques based on frequency-encoding applied to capacitive MEMS microphones

    Get PDF
    Mención Internacional en el título de doctorThis thesis focuses on the development of capacitive sensor readout circuits and data converters based on frequency-encoding. This research has been motivated by the needs of consumer electronics industry, which constantly demands more compact readout circuit for MEMS microphones and other sensors. Nowadays, data acquisition is mainly based on encoding signals in voltage or current domains, which is becoming more challenging in modern deep submicron CMOS technologies. Frequency-encoding is an emerging signal processing technique based on encoding signals in the frequency domain. The key advantage of this approach is that systems can be implemented using mostly-digital circuitry, which benefits from CMOS technology scaling. Frequencyencoding can be used to build phase referenced integrators, which can replace classical integrators (such as switched-capacitor based integrators) in the implementation of efficient analog-to-digital converters and sensor interfaces. The core of the phase referenced integrators studied in this thesis consists of the combination of different oscillator topologies with counters and highly-digital circuitry. This work addresses two related problems: the development of capacitive MEMS sensor readout circuits based on frequency-encoding, and the design and implementation of compact oscillator-based data converters for audio applications. In the first problem, the target is the integration of the MEMS sensor into an oscillator circuit, making the oscillation frequency dependent on the sensor capacitance. This way, the sound can be digitized by measuring the oscillation frequency, using digital circuitry. However, a MEMS microphone is a complex structure on which several parasitic effects can influence the operation of the oscillator. This work presents a feasibility analysis of the integration of a MEMS microphone into different oscillator topologies. The conclusion of this study is that the parasitics of the MEMS limit the performance of the microphone, making it inefficient. In contrast, replacing conventional ADCs with frequency-encoding based ADCs has proven a very efficient solution, which motivates the next problem. In the second problem, the focus is on the development of high-order oscillator-based Sigma-Delta modulators. Firstly, the equivalence between classical integrators and phase referenced integrators has been studied, followed by an overview of state-of-art oscillator-based converters. Then, a procedure to replace classical integrators by phase referenced integrators is presented, including a design example of a second-order oscillator based Sigma-Delta modulator. Subsequently, the main circuit impairments that limit the performance of this kind of implementations, such as phase noise, jitter or metastability, are described. This thesis also presents a methodology to evaluate the impact of phase noise and distortion in oscillator-based systems. The proposed method is based on periodic steady-state analysis, which allows the rapid estimation of the system dynamic range without resorting to transient simulations. In addition, a novel technique to analyze the impact of clock jitter in Sigma-Delta modulators is described. Two integrated circuits have been implemented in 0.13 μm CMOS technology to demonstrate the feasibility of high-order oscillator-based Sigma-Delta modulators. Both chips have been designed to feature secondorder noise shaping using only oscillators and digital circuitry. The first testchip shows a malfunction in the digital circuitry due to the complexity of the multi-bit counters. The second chip, implemented using single-bit counters for simplicity, shows second-order noise shaping and reaches 103 dB-A of dynamic range in the audio bandwidth, occupying only 0.04 mm2.Esta tesis se centra en el desarrollo de conversores de datos e interfaces para sensores capacitivos basados en codificación en frecuencia. Esta investigación está motivada por las necesidades de la industria, que constantemente demanda reducir el tamaño de este tipo de circuitos. Hoy en día, la adquisición de datos está basada principalmente en la codificación de señales en tensión o en corriente. Sin embargo, la implementación de este tipo de soluciones en tecnologías CMOS nanométricas presenta varias dificultades. La codificación de frecuencia es una técnica emergente en el procesado de señales basada en codificar señales en el dominio de la frecuencia. La principal ventaja de esta alternativa es que los sistemas pueden implementarse usando circuitos mayoritariamente digitales, los cuales se benefician de los avances de la tecnología CMOS. La codificación en frecuencia puede emplearse para construir integradores referidos a la fase, que pueden reemplazar a los integradores clásicos (como los basados en capacidades conmutadas) en la implementación de conversores analógico-digital e interfaces de sensores. Los integradores referidos a la fase estudiados en esta tesis consisten en la combinación de diferentes topologías de osciladores con contadores y circuitos principalmente digitales. Este trabajo aborda dos cuestiones relacionadas: el desarrollo de circuitos de lectura para sensores MEMS capacitivos basados en codificación temporal, y el diseño e implementación de conversores de datos compactos para aplicaciones de audio basados en osciladores. En el primer caso, el objetivo es la integración de un sensor MEMS en un oscilador, haciendo que la frecuencia de oscilación depe capacidad del sensor. De esta forma, el sonido puede ser digitalizado midiendo la frecuencia de oscilación, lo cual puede realizarse usando circuitos en su mayor parte digitales. Sin embargo, un micrófono MEMS es una estructura compleja en la que múltiples efectos parasíticos pueden alterar el correcto funcionamiento del oscilador. Este trabajo presenta un análisis de la viabilidad de integrar un micrófono MEMS en diferentes topologías de oscilador. La conclusión de este estudio es que los parasíticos del MEMS limitan el rendimiento del micrófono, causando que esta solución no sea eficiente. En cambio, la implementación de conversores analógico-digitales basados en codificación en frecuencia ha demostrado ser una alternativa muy eficiente, lo cual motiva el estudio del siguiente problema. La segunda cuestión está centrada en el desarrollo de moduladores Sigma-Delta de alto orden basados en osciladores. En primer lugar se ha estudiado la equivalencia entre los integradores clásicos y los integradores referidos a la fase, seguido de una descripción de los conversores basados en osciladores publicados en los últimos años. A continuación se presenta un procedimiento para reemplazar integradores clásicos por integradores referidos a la fase, incluyendo un ejemplo de diseño de un modulador Sigma-Delta de segundo orden basado en osciladores. Posteriormente se describen los principales problemas que limitan el rendimiento de este tipo de sistemas, como el ruido de fase, el jitter o la metaestabilidad. Esta tesis también presenta un nuevo método para evaluar el impacto del ruido de fase y de la distorsión en sistemas basados en osciladores. El método propuesto está basado en simulaciones PSS, las cuales permiten la rápida estimación del rango dinámico del sistema sin necesidad de recurrir a simulaciones temporales. Además, este trabajo describe una nueva técnica para analizar el impacto del jitter de reloj en moduladores Sigma-Delta. En esta tesis se han implementado dos circuitos integrados en tecnología CMOS de 0.13 μm, con el fin de demostrar la viabilidad de los moduladores Sigma-Delta de alto orden basados en osciladores. Ambos chips han sido diseñados para producir conformación espectral de ruido de segundo orden, usando únicamente osciladores y circuitos mayoritariamente digitales. El primer chip ha mostrado un error en el funcionamiento de los circuitos digitales debido a la complejidad de las estructuras multi-bit utilizadas. El segundo chip, implementado usando contadores de un solo bit con el fin de simplificar el sistema, consigue conformación espectral de ruido de segundo orden y alcanza 103 dB-A de rango dinámico en el ancho de banda del audio, ocupando solo 0.04 mm2.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Georges G.E. Gielen.- Secretario: José Manuel de la Rosa.- Vocal: Ana Rus

    Multibit delta sigma modulator with noise shaping dynamic element matching

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore