885 research outputs found

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    SNAP: Stateful Network-Wide Abstractions for Packet Processing

    Full text link
    Early programming languages for software-defined networking (SDN) were built on top of the simple match-action paradigm offered by OpenFlow 1.0. However, emerging hardware and software switches offer much more sophisticated support for persistent state in the data plane, without involving a central controller. Nevertheless, managing stateful, distributed systems efficiently and correctly is known to be one of the most challenging programming problems. To simplify this new SDN problem, we introduce SNAP. SNAP offers a simpler "centralized" stateful programming model, by allowing programmers to develop programs on top of one big switch rather than many. These programs may contain reads and writes to global, persistent arrays, and as a result, programmers can implement a broad range of applications, from stateful firewalls to fine-grained traffic monitoring. The SNAP compiler relieves programmers of having to worry about how to distribute, place, and optimize access to these stateful arrays by doing it all for them. More specifically, the compiler discovers read/write dependencies between arrays and translates one-big-switch programs into an efficient internal representation based on a novel variant of binary decision diagrams. This internal representation is used to construct a mixed-integer linear program, which jointly optimizes the placement of state and the routing of traffic across the underlying physical topology. We have implemented a prototype compiler and applied it to about 20 SNAP programs over various topologies to demonstrate our techniques' scalability

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Distributed Port Scanning Detection

    Get PDF
    Conventional Network Intrusion Detection System (NIDS) have heavyweight processing and memory requirements as they maintain per flow state using data structures like linked lists or trees. This is required for some specialized jobs such as Stateful Packet Inspection (SPI) where the network communications between entities are recreated in its entirety to inspect application level data. The downside to this approach is that the NIDS must be in a position to view all inbound and outbound traffic of the protected network. The NIDS can be overwhelmed by a DDoS attack since most of these try and exhaust the available state of network entities. For some applications like port scan detection, we do not require to reconstruct the complete network tra�c. We propose to integrate a detector into all routers so that a more distributed detection approach can be achieved. Since routers are devices with limited memory and processing capabilities, conventional NIDS approaches do not work while integrating a detector in them. We describe a method to detect port scans using aggregation. A data structure called a Partial Completion Filter(PCF) or a counting Bloom filter is used to reduce the per flow state
    • …
    corecore