6,207 research outputs found

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components

    Modular and composable extensions to smalltalk using composition filters

    Get PDF
    Current and future trends in computer science require extensions to Smalltalk. Rather than arguing for particular language mechanisms to deal with specific requirements, in this position paper we want to make a case for two requirements that Smalltalk extensions should fulfill. The first is that the extensions must be integrated with Smalltalk without violating its basic object model. The second requirement is that extensions should allow for defining objects that are still adaptable, extensible and reusable, and in particular do not cause inheritance anomalies. We propose the composition filters model as a framework for language extensions that fulfills these criteria. Its applicability to solving various modeling problems is briefly illustrated

    HP-CERTI: Towards a high performance, high availability open source RTI for composable simulations (04F-SIW-014)

    Get PDF
    Composing simulations of complex systems from already existing simulation components remains a challenging issue. Motivations for composable simulation include generation of a given federation driven by operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully distributed simulations, can be considered as an interoperability standard for composing simulations from existing components. Requirements for constructing such complex simulations are quite different from those discussed for distributed simulations. Although interoperability and reusability remain essential, both high performance and availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3 specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI, allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Runtime Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA (High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry of Defense

    Toward Generalized Entropy Composition with Different q Indices and H-Theorem

    Full text link
    An attempt is made to construct composable composite entropy with different qq indices of subsystems and address the H-theorem problem of the composite system. Though the H-theorem does not hold in general situations, it is shown that some composite entropies do not decrease in time in near-equilibrium states and factorized states with negligibly weak interaction between the subsystems.Comment: 25 pages, corrected some typos, to be published in J. Phys. Soc. Ja

    Compositional Model Repositories via Dynamic Constraint Satisfaction with Order-of-Magnitude Preferences

    Full text link
    The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude

    PrimitiveC-ADL: Primitive Component Architecture Description Language

    Get PDF
    In this paper, we introduce an architecture descrip- tion language (ADL) for PCOMs (a context oriented component model). The language is described at three levels: (1) Building blocks (PCOMs context oriented components types) (2) Connec- tors, which connect components externally and internally, and (3) Architectural Configuration, which includes a full description of composition and decomposition mechanisms. The contribution is designing ADL. That supports context- orinted component by providing new architecture elements, which fulfil the requirements of designing context oriented component based applications. Context oriented component is a behavioural unit composed of static parts and dynamic parts. A PCOMs component model design was introduced in our previous work. PCOMs proposes a component model design to compose context-aware system by capturing context condition at runtime. The model is a component-based one that modifies the application architecture by subdividing components into subsystems of static and dynamic elements. We map each context condition to a composable template architectural configuration. Each context condition acts to select behavioural patterns, which combine to form application architectures. Different types of architecture elements are proposed in this work. We focus in defining the following new elements: Com- ponents’ dynamic and static parts, components’ layers, decision policies, and composition plan. Finally we introduce an ADL that fully supports context aware applications, by supporting the definition of a component as a unit of behaviour. Our ADL clearly defines the composition mechanisms, and provides proper definition for the composition’s design Patterns and composition plan. A Context oriented component is a behavioural unit composed with static parts and dynamic parts. A PCOMs component model design was introduced in our previous work. PCOMs proposes a component model design to compose context-aware system by capturing context condition at runtime. The model is a component-based one that modifies the application architecture by subdividing components into subsystems of static and dynamic elements. We map each context condition to a composable tem- plate architectural configuration. Each context condition acts to selected behavioural patterns, which combine to form application architectures

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    A systematic approach for component-based software development

    Get PDF
    Component-based software development enables the construction of software artefacts by assembling prefabricated, configurable and independently evolving building blocks, called software components. This paper presents an approach for the development of component-based software artefacts. This approach consists of splitting the software development process according to four abstraction levels, viz., enterprise, system, component and object, and three different views, viz., structural, behavioural and interactional. The use of different abstraction levels and views allows a better control of the development process
    • 

    corecore