35 research outputs found

    A Depolarization Ratio Anomaly Detector to identify icebergs in sea ice using dual-polarization SAR images

    Get PDF
    Icebergs represent hazards to maritime traffic and offshore operations. Satellite Synthetic Aperture Radar (SAR) is very valuable for the observation of polar regions and extensive work was already carried out on detection and tracking of large icebergs. However, the identification of small icebergs is still challenging especially when these are embedded in sea ice. In this work, a new detector is proposed based on incoherent dual-polarization SAR images. The algorithm considers the limited extension of small icebergs, which are supposed to have a stronger cross polarization and higher cross- over co-polarization ratio compared to the surrounding sea or sea ice background. The new detector is tested with two satellite systems. Firstly, RADARSAT-2 quad-polarimetric images are analyzed to evaluate the effects of high resolution data. Subsequently a more exhaustive analysis is carried out using dual-polarization ground detected Sentinel-1a Extra Wide swath images acquired over the time span of two months. The test areas are on the East Coast of Greenland, where several icebergs have been observed. A quantitative analysis and a comparison with a detector using only the cross polarization channel is carried out exploiting grounded icebergs as test targets. The proposed methodology improves the contrast between icebergs and sea ice clutter by up to 75 times. This returns an improved probability of detection

    Iceberg Detection with L-Band ALOS-2 Data Using the Dual-POL Ratio Anomaly Detector

    Get PDF
    Icebergs represent a danger to navigation in cold waters. Detection and tracking of large icebergs using space-borne scatterometers, altimeters and synthetic aperture radar (SAR) systems have seen a large amount of work in the last decades. However, the identification of small icebergs is still challenging especially when these are embedded in sea ice. In this work, a recently proposed iceberg detector the intensity Dual-Pol Ratio Anomaly Detector (iDPolRAD) is tested using ALOS-2 L-band data. The detector is designed for dual-polarized incoherent SAR images, however in this work we want to investigate the loss of performance with respect to using coherent data. Therefore different versions of the iDPolRAD requiring quad-pol data are proposed here and tested. The ALOS-2 data were acquired on the East Coast of Greenland, where a large number of icebergs are visible in the images. The results show that different polarisations could bring different information and therefore the availability of dual-pol could improve the detection although a quad-pol algorithm will not be operational at the moment due to the limited size of the swath

    Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images

    Get PDF
    Automatic detection of icebergs in satellite images is regarded a useful tool to provide information necessary for safety in Arctic shipping or operations over large ocean areas in near-real time. In this work, we investigated the feasibility of automatic iceberg detection in Sentinel-1 Extra Wide Swath (EWS) SAR images which follow the preferred image mode in operational ice charting. As test region, we selected the Barents Sea where the size of many icebergs is on the order of the spatial resolution of the EWS-mode. We tested a new approach for a detection scheme. It is based on a combination of a filter for enhancing the contrast between icebergs and background, subsequent blob detection, and final application of a Constant False Alarm Rate (CFAR) algorithm. The filter relies mainly on the HV-polarized intensity which often reveals a larger difference between icebergs and sea ice or open water. The blob detector identifies locations of potential icebergs and thus shortens computation time. The final detection is performed on the identified blobs using the CFAR algorithm. About 2000 icebergs captured in fast ice were visually identified in Sentinel-2 Multi Spectral Imager (MSI) data and exploited for an assessment of the detection scheme performance using confusion matrices. For our performance tests, we used four Sentinel-1 EWS images. For judging the effect of spatial resolution, we carried out an additional test with one Sentinel-1 Interferometric Wide Swath (IWS) mode image. Our results show that only 8–22 percent of the icebergs could be detected in the EWS images, and over 90 percent of all detections were false alarms. In IWS mode, the number of correctly identified icebergs increased to 38 percent. However, we obtained a larger number of false alarms in the IWS image than in the corresponding EWS image. We identified two problems for iceberg detection: 1) with the given frequency–polarization combination, not all icebergs are strong scatterers at HV-polarization, and (2) icebergs and deformation structures present on fast ice can often not be distinguished since both may reveal equally strong responses at HV-polarization

    SAR Ship Detection for Rough Sea Conditions

    Get PDF
    In the Synthetic Aperture Radar (SAR) framework many detection algorithms and techniques have been published in the recent literature; however the detection of vessels whose dimensions are in the order of the image spatial resolution is still challenging in rough sea state scenarios. This issue is addressed in the paper presented here by comparing rationale and performance of two detectors developed by the same authors: the Generalized Likelihood Ratio Test (GLRT) and the Intensity Dual-Polarization Ratio Anomaly Detector (iDPolRAD). Both detectors are tested on a dual-polarization VV/VH Interferometric Wide Swath Sentinel-1 image acquired over the Suruga Bay on the Pacific Coast of Japan. The theory is presented here and the two detectors are compared against the Cell Average-Constant False Alarm Algorithm (CA-CFAR) showing both better performance than CFAR in terms of false alarms rejection

    Ship detection with Cosmo-SkyMed PINGPONG data using the dual-pol ratio anomaly detector

    Get PDF
    Extensive work has been carried out on detecting ships using space-borne Synthetic Aperture Radar (SAR) systems. However, the identification of small vessels is still challenging especially when the sea conditions are rough. In this work, a new detector is proposed based on dual-polarized incoherent SAR images. Small ships have a stronger cross polarization accompanied by a higher cross- over co-polarization ratio compared to sea. This is the rational at the base of the detector. The new detector is tested with dual-polarization HH/HV PINGPONG Cosmo-SkyMed images acquired over the North Sea. The test area is near Rotterdam where a large number of ships are expected

    Multi-Frequency and Multi-Polarization Synthetic Aperture Radar for the Larsen-C A-68 Iceberg Monitoring

    Get PDF
    none6openNunziata, Ferdinando; Buono, Andrea; Migliaccio, Maurizio; Moctezuma, Miguel; Parmiggiani, Flavio; Aulicino, GiuseppeNunziata, Ferdinando; Buono, Andrea; Migliaccio, Maurizio; Moctezuma, Miguel; Parmiggiani, Flavio; Aulicino, Giusepp

    Detecting aquaculture platforms using COSMO SkyMed

    Get PDF
    Aquaculture are a very valuable asset for many coastal countries and in the future they will play an important role in food security. Satellite remote sensing can improve the temporal and geo-spatial analysis of such marine facilities. Detecting platforms used for fish and shellfish farming provides a way to monitor assets and check they do not get damaged by storms. It also allows to identify illegal placement of structures in areas which should not host farms. In this work, we want to evaluate the use of COMSO SkyMed polarimetric acquisitions. In particular, we want to use a novel methodology called intensity Dual-Pol Ratio Anomaly Detector (iDPolRAD). Extensive work has been carried out on detecting ships using space-borne Synthetic Aperture Radar (SAR) systems. However, the identification of smaller and non-metallic targets is still challenging especially when the sea conditions are rough. This work presents an assessment of different detectors and polarimetric information for the detection of wooden mussels platforms. The results show that the use of dual polarimetric information can improve the detection performance. © VDE VERLAG GMBH Berlin Offenbac

    Quad-Polarimetric Multi-Scale Analysis of Icebergs in ALOS-2 SAR Data: A Comparison between Icebergs in West and East Greenland

    Get PDF
    Icebergs are ocean hazards which require extensive monitoring. Synthetic Aperture Radar (SAR) satellites can help with this, however, SAR backscattering is strongly influenced by the properties of icebergs, together with meteorological and environmental conditions. In this work, we used five images of quad-pol ALOS-2/PALSAR-2 SAR data to analyse 1332 icebergs in five locations in west and east Greenland. We investigate the backscatter and polarimetric behaviour, by using several observables and decompositions such as the Cloude–Pottier eigenvalue/eigenvector and Yamaguchi model-based decompositions. Our results show that those icebergs can contain a variety of scattering mechanisms at L-band. However, the most common scattering mechanism for icebergs is surface scattering, with the second most dominant volume scattering (or more generally, clouds of dipoles). In some cases, we observed a double bounce dominance, but this is not as common. Interestingly, we identified that different locations (e.g., glaciers) produce icebergs with different polarimetric characteristics. We also performed a multi-scale analysis using boxcar 5 × 5 and 11 × 11 window sizes and this revealed that depending on locations (and therefore, characteristics) icebergs can be a collection of strong scatterers that are packed in a denser or less dense way. This gives hope for using quad-pol polarimetry to provide some iceberg classifications in the future

    Iceberg topography and volume classification using TanDEM-X interferometry

    Get PDF
    Icebergs in polar regions affect water salinity, alter marine habitats, and impose serious hazards on maritime operations and navigation. These impacts mainly depend on the iceberg volume, which remains an elusive parameter to measure. We investigate the capability of TanDEM-X bistatic single-pass synthetic aperture radar interferometry (InSAR) to derive iceberg subaerial morphology and infer total volume. We cross-verify InSAR results with Operation IceBridge (OIB) data acquired near Wordie Bay, Antarctica, as part of the OIB/TanDEM-X Antarctic Science Campaign (OTASC). While icebergs are typically classified according to size based on length or maximum height, we develop a new volumetric classification approach for applications where iceberg volume is relevant. For icebergs with heights exceeding 5 m, we find iceberg volumes derived from TanDEM-X and OIB data match within 7 %. We also derive a range of possible iceberg keel depths relevant to grounding and potential impacts on subsea installations. These results suggest that TanDEM-X could pave the way for future single-pass interferometric systems for scientific and operational iceberg mapping and classification based on iceberg volume and keel depth

    The InflateSAR Campaign: Testing SAR Vessel Detection Systems for Refugee Rubber Inflatables

    Get PDF
    Countless numbers of people lost their lives at Europe’s southern borders in recent years in the attempt to cross to Europe in small rubber inflatables. This work examines satellite-based approaches to build up future systems that can automatically detect those boats. We compare the performance of several automatic vessel detectors using real synthetic aperture radar (SAR) data from X-band and C-band sensors on TerraSAR-X and Sentinel-1. The data was collected in an experimental campaign where an empty boat lies on a lake’s surface to analyse the influence of main sensor parameters (incidence angle, polarization mode, spatial resolution) on the detectability of our inflatable. All detectors are implemented with a moving window and use local clutter statistics from the adjacent water surface. Among tested detectors are well-known intensity-based (CA-CFAR), sublook-based (sublook correlation) and polarimetric-based (PWF, PMF, PNF, entropy, symmetry and iDPolRAD) approaches. Additionally, we introduced a new version of the volume detecting iDPolRAD aimed at detecting surface anomalies and compare two approaches to combine the volume and the surface in one algorithm, producing two new highly performing detectors. The results are compared with receiver operating characteristic (ROC) curves, enabling us to compare detectors independently of threshold selection
    corecore