367 research outputs found

    A Dense-Depth Representation for VLAD descriptors in Content-Based Image Retrieval

    Full text link
    The recent advances brought by deep learning allowed to improve the performance in image retrieval tasks. Through the many convolutional layers, available in a Convolutional Neural Network (CNN), it is possible to obtain a hierarchy of features from the evaluated image. At every step, the patches extracted are smaller than the previous levels and more representative. Following this idea, this paper introduces a new detector applied on the feature maps extracted from pre-trained CNN. Specifically, this approach lets to increase the number of features in order to increase the performance of the aggregation algorithms like the most famous and used VLAD embedding. The proposed approach is tested on different public datasets: Holidays, Oxford5k, Paris6k and UKB

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    An accurate retrieval through R-MAC+ descriptors for landmark recognition

    Full text link
    The landmark recognition problem is far from being solved, but with the use of features extracted from intermediate layers of Convolutional Neural Networks (CNNs), excellent results have been obtained. In this work, we propose some improvements on the creation of R-MAC descriptors in order to make the newly-proposed R-MAC+ descriptors more representative than the previous ones. However, the main contribution of this paper is a novel retrieval technique, that exploits the fine representativeness of the MAC descriptors of the database images. Using this descriptors called "db regions" during the retrieval stage, the performance is greatly improved. The proposed method is tested on different public datasets: Oxford5k, Paris6k and Holidays. It outperforms the state-of-the- art results on Holidays and reached excellent results on Oxford5k and Paris6k, overcame only by approaches based on fine-tuning strategies

    Deep filter banks for texture recognition, description, and segmentation

    Get PDF
    Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture representations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.Comment: 29 pages; 13 figures; 8 table

    Deep Architectures and Ensembles for Semantic Video Classification

    Get PDF
    This work addresses the problem of accurate semantic labelling of short videos. To this end, a multitude of different deep nets, ranging from traditional recurrent neural networks (LSTM, GRU), temporal agnostic networks (FV,VLAD,BoW), fully connected neural networks mid-stage AV fusion and others. Additionally, we also propose a residual architecture-based DNN for video classification, with state-of-the art classification performance at significantly reduced complexity. Furthermore, we propose four new approaches to diversity-driven multi-net ensembling, one based on fast correlation measure and three incorporating a DNN-based combiner. We show that significant performance gains can be achieved by ensembling diverse nets and we investigate factors contributing to high diversity. Based on the extensive YouTube8M dataset, we provide an in-depth evaluation and analysis of their behaviour. We show that the performance of the ensemble is state-of-the-art achieving the highest accuracy on the YouTube-8M Kaggle test data. The performance of the ensemble of classifiers was also evaluated on the HMDB51 and UCF101 datasets, and show that the resulting method achieves comparable accuracy with state-of-the-art methods using similar input features

    Efficient and Effective Solutions for Video Classification

    Get PDF
    The aim of this PhD thesis is to make a step forward towards teaching computers to understand videos in a similar way as humans do. In this work we tackle the video classification and/or action recognition tasks. This thesis was completed in a period of transition, the research community moving from traditional approaches (such as hand-crafted descriptor extraction) to deep learning. Therefore, this thesis captures this transition period, however, unlike image classification, where the state-of-the-art results are dominated by deep learning approaches, for video classification the deep learning approaches are not so dominant. As a matter of fact, most of the current state-of-the-art results in video classification are based on a hybrid approach where the hand-crafted descriptors are combined with deep features to obtain the best performance. This is due to several factors, such as the fact that video is a more complex data as compared to an image, therefore, more difficult to model and also that the video datasets are not large enough to train deep models with effective results. The pipeline for video classification can be broken down into three main steps: feature extraction, encoding and classification. While for the classification part, the existing techniques are more mature, for feature extraction and encoding there is still a significant room for improvement. In addition to these main steps, the framework contains some pre/post processing techniques, such as feature dimensionality reduction, feature decorrelation (for instance using Principal Component Analysis - PCA) and normalization, which can influence considerably the performance of the pipeline. One of the bottlenecks of the video classification pipeline is represented by the feature extraction step, where most of the approaches are extremely computationally demanding, what makes them not suitable for real-time applications. In this thesis, we tackle this issue, propose different speed-ups to improve the computational cost and introduce a new descriptor that can capture motion information from a video without the need of computing optical flow (which is very expensive to compute). Another important component for video classification is represented by the feature encoding step, which builds the final video representation that serves as input to a classifier. During the PhD, we proposed several improvements over the standard approaches for feature encoding. We also propose a new feature encoding approach for deep feature encoding. To summarize, the main contributions of this thesis are as follows3: (1) We propose several speed-ups for descriptor extraction, providing a version for the standard video descriptors that can run in real-time. We also investigate the trade-off between accuracy and computational efficiency; (2) We provide a new descriptor for extracting information from a video, which is very efficient to compute, being able to extract motion information without the need of extracting the optical flow; (3) We investigate different improvements over the standard encoding approaches for boosting the performance of the video classification pipeline.;(4) We propose a new feature encoding approach specifically designed for encoding local deep features, providing a more robust video representation
    corecore