72 research outputs found

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    Streaming algorithms for multitasking scheduling with shared processing

    Get PDF
    In this paper, we design the first streaming algorithms for the problem of multitasking scheduling on parallel machines with shared processing. In one pass, our streaming approximation schemes can provide an approximate value of the optimal makespan. If the jobs can be read in two passes, the algorithm can find the schedule with the approximate value. This work not only provides an algorithmic big data solution for the studied problem, but also gives an insight into the design of streaming algorithms for other problems in the area of scheduling

    Streaming Algorithms for Multitasking Scheduling with Shared Processing

    Get PDF
    In this paper, we design the first streaming algorithms for the problem of multitasking scheduling on parallel machines with shared processing. In one pass, our streaming approximation schemes can provide an approximate value of the optimal makespan. If the jobs can be read in two passes, the algorithm can find the schedule with the approximate value. This work not only provides an algorithmic big data solution for the studied problem, but also gives an insight into the design of streaming algorithms for other problems in the area of scheduling

    Hitting Subgraphs in Sparse Graphs and Geometric Intersection Graphs

    Full text link
    We investigate a fundamental vertex-deletion problem called (Induced) Subgraph Hitting: given a graph GG and a set F\mathcal{F} of forbidden graphs, the goal is to compute a minimum-sized set SS of vertices of GG such that GSG-S does not contain any graph in F\mathcal{F} as an (induced) subgraph. This is a generic problem that encompasses many well-known problems that were extensively studied on their own, particularly (but not only) from the perspectives of both approximation and parameterization. We focus on the design of efficient approximation schemes, i.e., with running time f(ε,F)nO(1)f(\varepsilon,\mathcal{F}) \cdot n^{O(1)}, which are also of significant interest to both communities. Technically, our main contribution is a linear-time approximation-preserving reduction from (Induced) Subgraph Hitting on any graph class G\mathcal{G} of bounded expansion to the same problem on bounded degree graphs within G\mathcal{G}. This yields a novel algorithmic technique to design (efficient) approximation schemes for the problem on very broad graph classes, well beyond the state-of-the-art. Specifically, applying this reduction, we derive approximation schemes with (almost) linear running time for the problem on any graph classes that have strongly sublinear separators and many important classes of geometric intersection graphs (such as fat-object graphs, pseudo-disk graphs, etc.). Our proofs introduce novel concepts and combinatorial observations that may be of independent interest (and, which we believe, will find other uses) for studies of approximation algorithms, parameterized complexity, sparse graph classes, and geometric intersection graphs. As a byproduct, we also obtain the first robust algorithm for kk-Subgraph Isomorphism on intersection graphs of fat objects and pseudo-disks, with running time f(k)nlogn+O(m)f(k) \cdot n \log n + O(m).Comment: 60 pages, abstract shortened to fulfill the length limi

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore