38 research outputs found

    UTP By Example : Designs

    Get PDF

    Heterogeneous Semantics and Unifying Theories

    Get PDF
    Model-driven development is being used increasingly in the development of modern computer-based systems. In the case of cyber-physical systems (including robotics and autonomous systems) no single modelling solution is adequate to cover all aspects of a system, such as discrete control, continuous dynamics, and communication networking. Instead, a heterogeneous modelling solution must be adopted. We propose a theory engineering technique involving Isabelle/HOL and Hoare & He’s Unifying Theories of Programming. We illustrate this approach with mechanised theories for building a contractual theory of sequential programming, a theory of pointer-based programs, and the reactive theory underpinning CSP’s process algebra. Galois connections provide the mechanism for linking these theories

    High integrity hardware-software codesign

    Get PDF
    Programmable logic devices (PLDs) are increasing in complexity and speed, and are being used as important components in safety-critical systems. Methods for developing high-integrity software for these systems are well-known, but this is not true for programmable logic. We propose a process for developing a system incorporating software and PLDs, suitable for safety critical systems of the highest levels of integrity. This process incorporates the use of Synchronous Receptive Process Theory as a semantic basis for specifying and proving properties of programs executing on PLDs, and extends the use of SPARK Ada from a programming language for safety-critical systems software to cover the interface between software and programmable logic. We have validated this approach through the specification and development of a substantial safety-critical system incorporating both software and programmable logic components, and the development of tools to support this work. This enables us to claim that the methods demonstrated are not only feasible but also scale up to realistic system sizes, allowing development of such safety-critical software-hardware systems to the levels required by current system safety standards

    High level compilation for gate reconfigurable architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 205-215).A continuing exponential increase in the number of programmable elements is turning management of gate-reconfigurable architectures as "glue logic" into an intractable problem; it is past time to raise this abstraction level. The physical hardware in gate-reconfigurable architectures is all low level - individual wires, bit-level functions, and single bit registers - hence one should look to the fetch-decode-execute machinery of traditional computers for higher level abstractions. Ordinary computers have machine-level architectural mechanisms that interpret instructions - instructions that are generated by a high-level compiler. Efficiently moving up to the next abstraction level requires leveraging these mechanisms without introducing the overhead of machine-level interpretation. In this dissertation, I solve this fundamental problem by specializing architectural mechanisms with respect to input programs. This solution is the key to efficient compilation of high-level programs to gate reconfigurable architectures. My approach to specialization includes several novel techniques. I develop, with others, extensive bitwidth analyses that apply to registers, pointers, and arrays. I use pointer analysis and memory disambiguation to target devices with blocks of embedded memory. My approach to memory parallelization generates a spatial hierarchy that enables easier-to-synthesize logic state machines with smaller circuits and no long wires.(cont.) My space-time scheduling approach integrates the techniques of high-level synthesis with the static routing concepts developed for single-chip multiprocessors. Using DeepC, a prototype compiler demonstrating my thesis, I compile a new benchmark suite to Xilinx Virtex FPGAs. Resulting performance is comparable to a custom MIPS processor, with smaller area (40 percent on average), higher evaluation speeds (2.4x), and lower energy (18x) and energy-delay (45x). Specialization of advanced mechanisms results in additional speedup, scaling with hardware area, at the expense of power. For comparison, I also target IBM's standard cell SA-27E process and the RAW microprocessor. Results include sensitivity analysis to the different mechanisms specialized and a grand comparison between alternate targets.by Jonathan William Babb.Ph.D

    Formal verification of an OCCAM-to-FPGA compiler and its generated logic circuits

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore