4,029 research outputs found

    Dynamics analysis of an HIV infection model with latent reservoir, delayed CTL immune response and immune impairment

    Get PDF
    In this paper, we propose an HIV model with latent reservoir, delayed CTL immune response and immune impairment in which both virus-to-cell infection and cell-to-cell viral transmission are considered. By using Lyapunov functionals and LaSalle’s invariance principle, it is verified that when time delay is equal to zero, the global threshold dynamics of the model is determined by the basic reproduction ratio. With the help of uniform persistence theory for infinite dimensional systems, we obtain the uniform persistence when the basic reproduction ratio is greater than unity. By choosing time delay as a bifurcation parameter and analyzing the corresponding characteristic equation of the system, we establish the existence of Hopf bifurcation at the chronic-infection equilibrium. Numerical simulations are carried out to illustrate the corresponding theoretical results

    Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host

    Full text link
    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure

    Host Genetics and Viral Diversity: Report from a Global HIV Vaccine Enterprise Working Group

    Get PDF
    The Global HIV Vaccine Enterprise convened a workshop in September 2009 to discuss human and viral genetic variation and its impact on future directions for HIV vaccine research and development. The formidable challenges presented by virus and host genetic variability are interrelated and complicate vaccine development. HIV vaccine researchers need to develop innovative approaches that will facilitate addressing these questions in novel ways

    HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression

    Get PDF
    Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression

    Viral Dynamics of Delayed CTL-inclusive HIV-1 Infection Model With Both Virus-to-cell and Cell-to-cell Transmissions

    Get PDF
    We consider a mathematical model that describes a viral infection of HIV-1 with both virus-tocell and cell-to-cell transmission, CTL response immune and four distributed delays, describing intracellular delays and immune response delay. One of the main features of the model is that it includes a constant production rate of CTLs export from thymus, and an immune response delay. We derive the basic reproduction number and show that if the basic reproduction number is less than one, then the infection free equilibrium is globally asymptotically stable; whereas, if the basic reproduction number is greater than one, then there exist a chronic infection equilibrium, which is globally asymptotically stable in absence of immune response delay. Furthermore, for the special case with only immune response delay, we determine some conditions for stability switches of the chronic infection equilibrium. Numerical simulations indicate that the intracellular delays and immune response delay can stabilize and/or destabilize the chronic infection equilibrium

    Timing of immune escape linked to success or failure of vaccination

    Get PDF
    Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated na&iuml;ve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of na&iuml;ve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.<br /
    • …
    corecore