4,848 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Fast optical layer mesh protection using pre-cross-connected trails

    Full text link
    Conventional optical networks are based on SONET rings, but since rings are known to use bandwidth inefficiently, there has been much research into shared mesh protection, which promises significant bandwidth savings. Unfortunately, most shared mesh protection schemes cannot guarantee that failed traffic will be restored within the 50 ms timeframe that SONET standards specify. A notable exception is the p-cycle scheme of Grover and Stamatelakis. We argue, however, that p-cycles have certain limitations, e.g., there is no easy way to adapt p-cycles to a path-based protection scheme, and p-cycles seem more suited to static traffic than to dynamic traffic. In this paper we show that the key to fast restoration times is not a ring-like topology per se, but rather the ability to pre-cross-connect protection paths. This leads to the concept of a pre-cross-connected trail or PXT, which is a structure that is more flexible than rings and that adapts readily to both path-based and link-based schemes and to both static and dynamic traffic. The PXT protection scheme achieves fast restoration speeds, and our simulations, which have been carefully chosen using ideas from experimental design theory, show that the bandwidth efficiency of the PXT protection scheme is comparable to that of conventional shared mesh protection schemes.Comment: Article has appeared in IEEE/ACM Trans. Networkin

    Integrated mechanisms for QoS and restoration in mesh transport networks

    Get PDF
    Survivable networks have the capability to survive from the events of network components failures. The resilience mechanisms in these networks protect and restore the impaired communication paths by using spare capacity. On the other hand, Quality of Service (QoS) mechanisms focus on network capabilities that provide the facilities to differentiate network traffic and offer different levels of service to each class of traffic. Traditionally the survivability algorithms were applied at the physical (optical) layer, whereas the QoS mechanisms mainly applied at packet-forwarding level. Recent technological breakthroughs can now facilitate novel forwarding techniques for optical data bursts that make it possible to capture packets at the optical layer. A major challenge in the transfer of these ultrahigh-speed data bursts is to allocate resources according to QoS specifications and to provide spare capacity required to address link failures

    Network protection with guaranteed recovery times using recovery domains

    Get PDF
    We consider the problem of providing network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent “recovery domains”, where within each domain, the maximum amount of time to recover from a failure is guaranteed. We show the recovery domain problem to be NP-Hard, and develop an optimal solution in the form of an MILP for both the case when backup capacity can and cannot be shared. This provides protection with guaranteed recovery times using up to 45% less protection resources than local recovery. We demonstrate that the network-wide optimal recovery domain solution can be decomposed into a set of easier to solve subproblems. This allows for the development of flexible and efficient solutions, including an optimal algorithm using Lagrangian relaxation, which simulations show to converge rapidly to an optimal solution. Additionally, an algorithm is developed for when backup sharing is allowed. For dynamic arrivals, this algorithm performs better than the solution that tries to greedily optimize for each incoming demand.National Science Foundation (U.S.) (NSF grant CNS-1017800)National Science Foundation (U.S.) (grant CNS-0830961)United States. Defense Threat Reduction Agency (grant HDTRA-09-1-005)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004)United States. Air Force (Air Force contract # FA8721-05-C-0002

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2
    • …
    corecore