1,103 research outputs found

    HEH-BMAC: hybrid polling MAC protocol for WBANs operated by human energy harvesting

    Get PDF
    This paper introduces human energy harvesting medium access control (MAC) protocol (HEH-BMAC), a hybrid polling MAC suitable for wireless body area networks powered by human energy harvesting. The proposed protocol combines two different medium access methods, namely polling (ID-polling) and probabilistic contention access, to adapt its operation to the different energy and state (active/inactive) changes that the network nodes may experience due to their random nature and the time variation of the energy harvesting sources. HEH-BMAC exploits the packet inter-arrival time and the energy harvesting rate information of each node to implement an efficient access scheme with different priority levels. In addition, our protocol can be applied dynamically in realistic networks, since it is adaptive to the topology changes, allowing the insertion/removal of wireless sensor nodes. Extensive simulations have been conducted in order to evaluate the protocol performance and study the throughput and energy tradeoffs.Peer ReviewedPostprint (author's final draft

    Study of MAC Protocols for Mobile Wireless Body Sensor Networks

    Get PDF
    Wireless Body Area Networks (WBAN) also referred to as a body sensor network (BSN), is a wireless network of wearable computing devices. It has emerged as a key technology to provide real-time health monitoring of a patient and diagnose many life threatening diseases. WBAN operates in close vicinity to, on, or inside a human body and supports a variety of medical and non-medical applications. The design of a medium access control is a challenge due to the characteristics of wireless channel and the need to fulfill both requirements of mobility support and energy efficiency.  This paper presents a comparative study of IEEE 802.15.6, IEEE 804.15.4 and T-MAC in order to analyze the performance of each standard in terms of delay, throughput and energy consumption. Keywords: Biomedical, IEEE 802.15.6; T-MAC, IEEE 802.15.4, mobility, low-power communication, wireless body sensor networks, implantable sensors, healthcare applications, biosensors

    Performance evaluation of wake-up radio based wireless body area network

    Get PDF
    Abstract. The last decade has been really ambitious in new research and development techniques to reduce energy consumption especially in wireless sensor networks (WSNs). Sensor nodes are usually battery-powered and thus have very limited lifetime. Energy efficiency has been the most important aspect to discuss when talking about wireless body area network (WBAN) in particular, since it is the bottleneck of these networks. Medium access control (MAC) protocols hold the vital position to determine the energy efficiency of a WBAN, which is a key design issue for battery operated sensor nodes. The wake-up radio (WUR) based MAC and physical layer (PHY) have been evaluated in this research work in order to contribute to the energy efficient solutions development. WUR is an on-demand approach in which the node is woken up by the wake-up signal (WUS). A WUS switches a node from sleep mode to wake up mode to start signal transmission and reception. The WUS is transmitted or received by a secondary radio transceiver, which operates on very low power. The energy benefit of using WUR is compared with conventional duty-cycling approach. As the protocol defines the nodes in WUR based network do not waste energy on idle listening and are only awakened when there is a request for communication, therefore, energy consumption is extremely low. The performance of WUR based MAC protocol has been evaluated for both physical layer (PHY) and MAC for transmission of WUS and data. The probabilities of miss detection, false alarm and detection error rates are calculated for PHY and the probabilities of collision and successful data transmission for channel access method Aloha is evaluated. The results are obtained to compute and compare the total energy consumption of WUR based network with duty cycling. The results prove that the WUR based networks have significant potential to improve energy efficiency, in comparison to conventional duty cycling approach especially, in the case of low data-reporting rate applications. The duty cycle approach is better than WUR approach when sufficiently low duty cycle is combined with highly frequent communication between the network nodes

    Study on Improving the Network Life Time Maximazation for Wireless Sensor Network using Cross Layer Approach

    Get PDF
    In recent the espousal of Wireless Sensor Networks has been broadly augmented in numerous divisions. Battery operated Sensor nodes in the wireless network accomplish main task of capturing and responding to the surroundings. The lifetime of the network depends on the energy consumption of the sensor nodes. This paper contributes the survey on how the energy consumption should be managed for maximizing the life time of network and how to improve the efficiency of Network by using Cross layer architecture. The traditional MAC Layer, Network Layer & Transport for WLAN having their own downsides just by modifying those we can achieve the network life time maximization goal. This paper represents analytical study for Energy efficiency by modifying Scheduling algorithm, by modifying traditional AODV routing algorithm for efficient packet transmission and by effectively using TCP for End to End Delivery of Data

    Experimental investigation into novel methods of reliable and secure on-body communications with low system overheads

    Get PDF
    Until recently the concept of wearable biosensors for purposes of medical monitoring was restricted to wired sensor applications. Recent advances in electronics and wireless communications have made the possibility of removing the wire from sensor applications a possibility. These advances have led to the development of small scale, wearable, sensing and communication platforms that can be placed on the human body creating the foundation for a Body Sensor Network (BSN). Body Sensor Networks aim to remove the restrictions that traditional wired sensors impose. The anticipation is that BSNs will permit the monitoring of physiological signals in any environment without limitation, giving Physicians the ability to monitor patients more closely and in environments that they cannot monitor today. Even with the recent advancements of electronics and wireless communications there are still many unanswered questions for practical solutions of BSNs that prevent BSNs from replacing traditional wired systems altogether. There is a great need for research into BSN architectures to set the standard for wireless sensor monitoring. In this work a development platform has been created for the investigation into the design and implementation of practical BSN solutions. The platform is used to compare BSN architectures and provide quantifiable results. From this work BSN architecture components that provide optimizations in system performance, energy, network lifetime and security are recommended. In Chapter 3 BSN network architectures employing the use of relaying of creeping waves is investigated. The investigation includes experimental analysis of various test environments. Experimentation demonstrates that the relaying of creeping waves offers considerable performance gains when compared to non-relay networks. For example, relaying is shown to increase network-lifetime by a factor of 13, decrease energy-per-bit requirements by 13 dB and provide the ability for the network to compensate for considerably wider fade margins. In Chapter 4 utilizing the randomness of the wireless channel for securing on-body communications with low overheads is considered. A low-complexity algorithm for establishing symmetric encryption keys is presented and validated. The algorithm relies on readily available RSSI measurements obtained from existing packets being sent and received in the network. The generated bit sequences from the algorithm are evaluated for matching between two communicating parties and mismatching with a malicious eavesdropper. It is shown that the algorithm produces long sequences of highly random bits that are perfectly matched between legitimate parties and highly mismatched with the eavesdropper
    • …
    corecore