15,900 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    Convergent expansions for Random Cluster Model with q>0 on infinite graphs

    Full text link
    In this paper we extend our previous results on the connectivity functions and pressure of the Random Cluster Model in the highly subcritical phase and in the highly supercritical phase, originally proved only on the cubic lattice Zd\Z^d, to a much wider class of infinite graphs. In particular, concerning the subcritical regime, we show that the connectivity functions are analytic and decay exponentially in any bounded degree graph. In the supercritical phase, we are able to prove the analyticity of finite connectivity functions in a smaller class of graphs, namely, bounded degree graphs with the so called minimal cut-set property and satisfying a (very mild) isoperimetric inequality. On the other hand we show that the large distances decay of finite connectivity in the supercritical regime can be polynomially slow depending on the topological structure of the graph. Analogous analyticity results are obtained for the pressure of the Random Cluster Model on an infinite graph, but with the further assumptions of amenability and quasi-transitivity of the graph.Comment: In this new version the introduction has been revised, some references have been added, and many typos have been corrected. 37 pages, to appear in Communications on Pure and Applied Analysi

    Standard imsets for undirected and chain graphical models

    Full text link
    We derive standard imsets for undirected graphical models and chain graphical models. Standard imsets for undirected graphical models are described in terms of minimal triangulations for maximal prime subgraphs of the undirected graphs. For describing standard imsets for chain graphical models, we first define a triangulation of a chain graph. We then use the triangulation to generalize our results for the undirected graphs to chain graphs.Comment: Published at http://dx.doi.org/10.3150/14-BEJ611 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Cycle-based Cluster Variational Method for Direct and Inverse Inference

    Get PDF
    We elaborate on the idea that loop corrections to belief propagation could be dealt with in a systematic way on pairwise Markov random fields, by using the elements of a cycle basis to define region in a generalized belief propagation setting. The region graph is specified in such a way as to avoid dual loops as much as possible, by discarding redundant Lagrange multipliers, in order to facilitate the convergence, while avoiding instabilities associated to minimal factor graph construction. We end up with a two-level algorithm, where a belief propagation algorithm is run alternatively at the level of each cycle and at the inter-region level. The inverse problem of finding the couplings of a Markov random field from empirical covariances can be addressed region wise. It turns out that this can be done efficiently in particular in the Ising context, where fixed point equations can be derived along with a one-parameter log likelihood function to minimize. Numerical experiments confirm the effectiveness of these considerations both for the direct and inverse MRF inference.Comment: 47 pages, 16 figure

    Risk in a large claims insurance market with bipartite graph structure

    Full text link
    We model the influence of sharing large exogeneous losses to the reinsurance market by a bipartite graph. Using Pareto-tailed claims and multivariate regular variation we obtain asymptotic results for the Value-at-Risk and the Conditional Tail Expectation. We show that the dependence on the network structure plays a fundamental role in their asymptotic behaviour. As is well-known in a non-network setting, if the Pareto exponent is larger than 1, then for the individual agent (reinsurance company) diversification is beneficial, whereas when it is less than 1, concentration on a few objects is the better strategy. An additional aspect of this paper is the amount of uninsured losses which have to be convered by society. In the situation of networks of agents, in our setting diversification is never detrimental concerning the amount of uninsured losses. If the Pareto-tailed claims have finite mean, diversification turns out to be never detrimental, both for society and for individual agents. In contrast, if the Pareto-tailed claims have infinite mean, a conflicting situation may arise between the incentives of individual agents and the interest of some regulator to keep risk for society small. We explain the influence of the network structure on diversification effects in different network scenarios
    corecore