699 research outputs found

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Uncertainty aversion and equilibrium in extensive games.

    Get PDF
    This paper formulates a rationality concept for extensive games in which deviations from rational play are interpreted as evidence of irrationality. Instead of confirming some prior belief about the nature of nonrational play, we assume that such a deviation leads to genuine uncertainty. Assuming complete ignorance about the nature of non-rational play and extreme uncertainty aversion of the rational players, we formulate an equilibrium concept on the basis of Choquet expected utility theory. Equilibrium reasoning is thus only applied on the equilibrium path, maximin reasoning applies off the equilibrium path. The equilibrium path itself is endogenously determined. In general this leads to strategy profiles differ qualitatively from sequential equilibria, but still satisfy equilibrium and perfection requirements. In the centipede game and the finitely repeated prisoners’ dilemma this approach can also resolve the backward induction paradox.

    Software quality and reliability prediction using Dempster -Shafer theory

    Get PDF
    As software systems are increasingly deployed in mission critical applications, accurate quality and reliability predictions are becoming a necessity. Most accurate prediction models require extensive testing effort, implying increased cost and slowing down the development life cycle. We developed two novel statistical models based on Dempster-Shafer theory, which provide accurate predictions from relatively small data sets of direct and indirect software reliability and quality predictors. The models are flexible enough to incorporate information generated throughout the development life-cycle to improve the prediction accuracy.;Our first contribution is an original algorithm for building Dempster-Shafer Belief Networks using prediction logic. This model has been applied to software quality prediction. We demonstrated that the prediction accuracy of Dempster-Shafer Belief Networks is higher than that achieved by logistic regression, discriminant analysis, random forests, as well as the algorithms in two machine learning software packages, See5 and WEKA. The difference in the performance of the Dempster-Shafer Belief Networks over the other methods is statistically significant.;Our second contribution is also based on a practical extension of Dempster-Shafer theory. The major limitation of the Dempsters rule and other known rules of evidence combination is the inability to handle information coming from correlated sources. Motivated by inherently high correlations between early life-cycle predictors of software reliability, we extended Murphy\u27s rule of combination to account for these correlations. When used as a part of the methodology that fuses various software reliability prediction systems, this rule provided more accurate predictions than previously reported methods. In addition, we proposed an algorithm, which defines the upper and lower bounds of the belief function of the combination results. To demonstrate its generality, we successfully applied it in the design of the Online Safety Monitor, which fuses multiple correlated time varying estimations of convergence of neural network learning in an intelligent flight control system

    The belief noisy-or model applied to network reliability analysis

    Get PDF
    One difficulty faced in knowledge engineering for Bayesian Network (BN) is the quan-tification step where the Conditional Probability Tables (CPTs) are determined. The number of parameters included in CPTs increases exponentially with the number of parent variables. The most common solution is the application of the so-called canonical gates. The Noisy-OR (NOR) gate, which takes advantage of the independence of causal interactions, provides a logarithmic reduction of the number of parameters required to specify a CPT. In this paper, an extension of NOR model based on the theory of belief functions, named Belief Noisy-OR (BNOR), is proposed. BNOR is capable of dealing with both aleatory and epistemic uncertainty of the network. Compared with NOR, more rich information which is of great value for making decisions can be got when the available knowledge is uncertain. Specially, when there is no epistemic uncertainty, BNOR degrades into NOR. Additionally, different structures of BNOR are presented in this paper in order to meet various needs of engineers. The application of BNOR model on the reliability evaluation problem of networked systems demonstrates its effectiveness

    Using evidence combination for transformer defect diagnosis

    Get PDF
    This paper describes a number of methods of evidence combination, and their applicability to the domain of transformer defect diagnosis. It explains how evidence combination fits into an on-line and implemented agent-based condition monitoring system, and the benefits of giving selected agents reflective abilities. Reflection has not previously been deployed in an industrial setting, and theoretical work has been in domains other than power engineering. This paper presents the results of implementing five different methods of evidence combination, showing that reflective techniques give greater accuracy than non-reflective
    corecore