23,842 research outputs found

    A logic of defeasible argumentation: Constructing arguments in justification logic

    Get PDF
    In the 1980s, Pollock’s work on default reasons started the quest in the AI community for a formal system of defeasible argumentation. The main goal of this paper is to provide a logic of structured defeasible arguments using the language of justification logic. In this logic, we introduce defeasible justification assertions of the type t:F that read as “t is a defeasible reason that justifies F”. Such formulas are then interpreted as arguments and their acceptance semantics is given in analogy to Dung’s abstract argumentation framework semantics. We show that a large subclass of Dung’s frameworks that we call “warranted” frameworks is a special case of our logic in the sense that (1) Dung’s frameworks can be obtained from justification logic-based theories by focusing on a single aspect of attacks among justification logic arguments and (2) Dung’s warranted frameworks always have multiple justification logic instantiations called “realizations”. We first define a new justification logic that relies on operational semantics for default logic. One of the key features that is absent in standard justification logics is the possibility to weigh different epistemic reasons or pieces of evidence that might conflict with one another. To amend this, we develop a semantics for “defeaters”: conflicting reasons forming a basis to doubt the original conclusion or to believe an opposite statement. This enables us to formalize non-monotonic justifications that prompt extension revision already for normal default theories. Then we present our logic as a system for abstract argumentation with structured arguments. The format of conflicting reasons overlaps with the idea of attacks between arguments to the extent that it is possible to define all the standard notions of argumentation framework extensions. Using the definitions of extensions, we establish formal correspondence between Dung’s original argumentation semantics and our operational semantics for default theories. One of the results shows that the notorious attack cycles from abstract argumentation cannot always be realized as justification logic default theories

    Reasoning by Cases in Structured Argumentation

    Full text link
    We extend the ASPIC+ASPIC^+ framework for structured argumentation so as to allow applications of the reasoning by cases inference scheme for defeasible arguments. Given an argument with conclusion `AA or BB', an argument based on AA with conclusion CC, and an argument based on BB with conclusion CC, we allow the construction of an argument with conclusion CC. We show how our framework leads to different results than other approaches in non-monotonic logic for dealing with disjunctive information, such as disjunctive default theory or approaches based on the OR-rule (which allows to derive a defeasible rule `If (AA or BB) then CC', given two defeasible rules `If AA then CC' and `If BB then CC'). We raise new questions regarding the subtleties of reasoning defeasibly with disjunctive information, and show that its formalization is more intricate than one would presume.Comment: Proceedings of SAC/KRR 201

    Semantics of logic programs with explicit negation

    Get PDF
    After a historical introduction, the bulk of the thesis concerns the study of a declarative semantics for logic programs. The main original contributions are: ² WFSX (Well–Founded Semantics with eXplicit negation), a new semantics for logic programs with explicit negation (i.e. extended logic programs), which compares favourably in its properties with other extant semantics. ² A generic characterization schema that facilitates comparisons among a diversity of semantics of extended logic programs, including WFSX. ² An autoepistemic and a default logic corresponding to WFSX, which solve existing problems of the classical approaches to autoepistemic and default logics, and clarify the meaning of explicit negation in logic programs. ² A framework for defining a spectrum of semantics of extended logic programs based on the abduction of negative hypotheses. This framework allows for the characterization of different levels of scepticism/credulity, consensuality, and argumentation. One of the semantics of abduction coincides with WFSX. ² O–semantics, a semantics that uniquely adds more CWA hypotheses to WFSX. The techniques used for doing so are applicable as well to the well–founded semantics of normal logic programs. ² By introducing explicit negation into logic programs contradiction may appear. I present two approaches for dealing with contradiction, and show their equivalence. One of the approaches consists in avoiding contradiction, and is based on restrictions in the adoption of abductive hypotheses. The other approach consists in removing contradiction, and is based in a transformation of contradictory programs into noncontradictory ones, guided by the reasons for contradiction

    A Parameterised Hierarchy of Argumentation Semantics for Extended Logic Programming and its Application to the Well-founded Semantics

    Full text link
    Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning by viewing a proof as a process in which proponents and opponents attack each others arguments by undercuts (attack to an argument's premise) and rebuts (attack to an argument's conclusion). In this paper, we formulate a variety of notions of attack for extended logic programs from combinations of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by the notions of attack chosen by proponent and opponent. We prove the equivalence and subset relationships between the semantics and examine some essential properties concerning consistency and the coherence principle, which relates default negation and explicit negation. Most significantly, we place existing semantics put forward in the literature in our hierarchy and identify a particular argumentation semantics for which we prove equivalence to the paraconsistent well-founded semantics with explicit negation, WFSXp_p. Finally, we present a general proof theory, based on dialogue trees, and show that it is sound and complete with respect to the argumentation semantics.Comment: To appear in Theory and Practice of Logic Programmin

    Reasoning about Action: An Argumentation - Theoretic Approach

    Full text link
    We present a uniform non-monotonic solution to the problems of reasoning about action on the basis of an argumentation-theoretic approach. Our theory is provably correct relative to a sensible minimisation policy introduced on top of a temporal propositional logic. Sophisticated problem domains can be formalised in our framework. As much attention of researchers in the field has been paid to the traditional and basic problems in reasoning about actions such as the frame, the qualification and the ramification problems, approaches to these problems within our formalisation lie at heart of the expositions presented in this paper

    A Plausibility Semantics for Abstract Argumentation Frameworks

    Get PDF
    We propose and investigate a simple ranking-measure-based extension semantics for abstract argumentation frameworks based on their generic instantiation by default knowledge bases and the ranking construction semantics for default reasoning. In this context, we consider the path from structured to logical to shallow semantic instantiations. The resulting well-justified JZ-extension semantics diverges from more traditional approaches.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014). This is an improved and extended version of the author's ECSQARU 2013 pape
    • …
    corecore