892 research outputs found

    Solving Bongard Problems with a Visual Language and Pragmatic Reasoning

    Full text link
    More than 50 years ago Bongard introduced 100 visual concept learning problems as a testbed for intelligent vision systems. These problems are now known as Bongard problems. Although they are well known in the cognitive science and AI communities only moderate progress has been made towards building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language that allows representing complex visual concepts based on this vocabulary. Using this language and Bayesian inference, complex visual concepts can be induced from the examples that are provided in each Bongard problem. Contrary to other concept learning problems the examples from which concepts are induced are not random in Bongard problems, instead they are carefully chosen to communicate the concept, hence requiring pragmatic reasoning. Taking pragmatic reasoning into account we find good agreement between the concepts with high posterior probability and the solutions formulated by Bongard himself. While this approach is far from solving all Bongard problems, it solves the biggest fraction yet

    Representational unification in cognitive science: Is embodied cognition a unifying perspective?

    Get PDF
    In this paper, we defend a novel, multidimensional account of representational unification, which we distinguish from integration. The dimensions of unity are simplicity, generality and scope, non-monstrosity, and systematization. In our account, unification is a graded property. The account is used to investigate the issue of how research traditions contribute to representational unification, focusing on embodied cognition in cognitive science. Embodied cognition contributes to unification even if it fails to offer a grand unification of cognitive science. The study of this failure shows that unification, contrary to what defenders of mechanistic explanation claim, is an important mechanistic virtue of research traditions

    Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs

    Full text link
    Inductive logic programming, or relational learning, is a powerful paradigm for machine learning or data mining. However, in order for ILP to become practically useful, the efficiency of ILP systems must improve substantially. To this end, the notion of a query pack is introduced: it structures sets of similar queries. Furthermore, a mechanism is described for executing such query packs. A complexity analysis shows that considerable efficiency improvements can be achieved through the use of this query pack execution mechanism. This claim is supported by empirical results obtained by incorporating support for query pack execution in two existing learning systems

    Exploring the Modularity and Structure of Robots Evolved in Multiple Environments

    Get PDF
    Traditional techniques for the design of robots require human engineers to plan every aspect of the system, from body to controller. In contrast, the field of evolu- tionary robotics uses evolutionary algorithms to create optimized morphologies and neural controllers with minimal human intervention. In order to expand the capability of an evolved agent, it must be exposed to a variety of conditions and environments. This thesis investigates the design and benefits of virtual robots which can reflect the structure and modularity in the world around them. I show that when a robot’s morphology and controller enable it to perceive each environment as a collection of independent components, rather than a monolithic entity, evolution only needs to optimize on a subset of environments in order to maintain performance in the overall larger environmental space. I explore previously unused methods in evolutionary robotics to aid in the evolution of modularity, including using morphological and neurological cost. I utilize a tree morphology which makes my results generalizable to other mor- phologies while also allowing in depth theoretical analysis about the properties rel- evant to modularity in embodied agents. In order to better frame the question of modularity in an embodied context, I provide novel definitions of morphological and neurological modularity as well as create the sub-goal interference metric which mea- sures how much independence a robot exhibits with regards to environmental stimu- lus. My work extends beyond evolutionary robotics and can be applied to the opti- mization of embodied systems in general as well as provides insight into the evolution of form in biological organisms
    • …
    corecore