17,809 research outputs found

    Jefferson Digital Commons quarterly report: January-March 2020

    Get PDF
    This quarterly report includes: New Look for the Jefferson Digital Commons Articles COVID-19 Working Papers Educational Materials From the Archives Grand Rounds and Lectures JeffMD Scholarly Inquiry Abstracts Journals and Newsletters Master of Public Health Capstones Oral Histories Posters and Conference Presentations What People are Saying About the Jefferson the Digital Common

    MACHINE LEARNING APPROACHES FOR BIOMARKER IDENTIFICATION AND SUBGROUP DISCOVERY FOR POST-TRAUMATIC STRESS DISORDER

    Get PDF
    Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by environmental and genetic factors resulting from alterations in genetic variation, epigenetic changes and neuroimaging characteristics. There is a pressing need to identify reliable molecular and physiological biomarkers for accurate diagnosis, prognosis, and treatment, as well to deepen the understanding of PTSD pathophysiology. Machine learning methods are widely used to infer patterns from biological data, identify biomarkers, and make predictions. The objective of this research is to apply machine learning methods for the accurate classification of human diseases from genome-scale datasets, focusing primarily on PTSD.The DoD-funded Systems Biology of PTSD Consortium has recruited combat veterans with and without PTSD for measurement of molecular and physiological data from blood or urine samples with the goal of identifying accurate and specific PTSD biomarkers. As a member of the Consortium with access to these PTSD multiple omics datasets, we first completed a project titled Clinical Subgroup-Specific PTSD Classification and Biomarker Discovery. We applied machine learning approaches to these data to build classification models consisting of molecular and clinical features to predict PTSD status. We also identified candidate biomarkers for diagnosis, which improves our understanding of PTSD pathogenesis. In a second project, entitled Multi-Omic PTSD Subgroup Identification and Clinical Characterization, we applied methods for integrating multiple omics datasets to investigate the complex, multivariate nature of the biological systems underlying PTSD. We identified an optimal 2 PTSD subgroups using two different machine learning approaches from 82 PTSD positive samples, and we found that the subgroups exhibited different remitting behavior as inferred from subjects recalled at a later time point. The results from our association, differential expression, and classification analyses demonstrated the distinct clinical and molecular features characterizing these subgroups.Taken together, our work has advanced our understanding of PTSD biomarkers and subgroups through the use of machine learning approaches. Results from our work should strongly contribute to the precise diagnosis and eventual treatment of PTSD, as well as other diseases. Future work will involve continuing to leverage these results to enable precision medicine for PTSD

    Transfer learning for time series classification

    Full text link
    Transfer learning for deep neural networks is the process of first training a base network on a source dataset, and then transferring the learned features (the network's weights) to a second network to be trained on a target dataset. This idea has been shown to improve deep neural network's generalization capabilities in many computer vision tasks such as image recognition and object localization. Apart from these applications, deep Convolutional Neural Networks (CNNs) have also recently gained popularity in the Time Series Classification (TSC) community. However, unlike for image recognition problems, transfer learning techniques have not yet been investigated thoroughly for the TSC task. This is surprising as the accuracy of deep learning models for TSC could potentially be improved if the model is fine-tuned from a pre-trained neural network instead of training it from scratch. In this paper, we fill this gap by investigating how to transfer deep CNNs for the TSC task. To evaluate the potential of transfer learning, we performed extensive experiments using the UCR archive which is the largest publicly available TSC benchmark containing 85 datasets. For each dataset in the archive, we pre-trained a model and then fine-tuned it on the other datasets resulting in 7140 different deep neural networks. These experiments revealed that transfer learning can improve or degrade the model's predictions depending on the dataset used for transfer. Therefore, in an effort to predict the best source dataset for a given target dataset, we propose a new method relying on Dynamic Time Warping to measure inter-datasets similarities. We describe how our method can guide the transfer to choose the best source dataset leading to an improvement in accuracy on 71 out of 85 datasets.Comment: Accepted at IEEE International Conference on Big Data 201

    Morphological Variability Analysis of Physiologic Waveform for Prediction and Detection of Diseases

    Get PDF
    For many years it has been known that variability of the morphology of high-resolution (∌30-1000 Hz) physiological time series data provides additional prognostic value over lower resolution (≀ 1Hz) derived averages such as heart rate (HR), breathing rate (BR) and blood pressure (BP). However, the field has remained rather ad hoc, based on hand-crafted features. Using a model-based approach we explore the nature of these features and their sensitivity to variabilities introduced by changes in both the sampling period (HR) and observational reference frame (through breathing). HR and BR are determined as having a statistically significant confounding effect on the morphological variability (MV) evaluated in high-resolution physiological time series data, thus an important gap is identified in previous studies that ignored the effects of HR and BR when measuring MV. We build a best-in-class open-source toolbox for exploring MV that accounts for the confounding factors of HR and BR. We demonstrate the toolbox’s utility in three domains on three different signals: arterial BP in sepsis; photoplethysmogram in coarctation of the aorta; and electrocardiogram (ECG) in post-traumatic stress disorder (PTSD). In each of the three case studies, incorporating features that capture MV while controlling for BR and/or HR improved disease classification performance compared to previously established methods that used features from lower resolution time series data. Using the PTSD example, we then introduce a deep learning approach that significantly improves our ability to identify the effects of PTSD on ECG morphology. In particular, we show that pre-training the algorithm on a database of over 70,000 ECGs containing a set of 25 rhythms, allowed us to boost performance from an area under the receiver operating characteristic curve (AUROC) of 0.61 to 0.85. This novel approach to identifying morphology indicates that there is much more to morphological variability during stressful PTSD-related events than the simple periodic modulation of the T-wave amplitude. This research indicates that future work should focus on identifying the etiology of the dynamic features in the ECG that provided such a large boost in performance, since this may reveal novel underlying mechanisms of the influence of PTSD on the myocardium.Ph.D

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    The Pros and Cons of Using Machine Learning and Interpretable Machine Learning Methods in psychiatry detection applications, specifically depression disorder: A Brief Review

    Full text link
    The COVID-19 pandemic has forced many people to limit their social activities, which has resulted in a rise in mental illnesses, particularly depression. To diagnose these illnesses with accuracy and speed, and prevent severe outcomes such as suicide, the use of machine learning has become increasingly important. Additionally, to provide precise and understandable diagnoses for better treatment, AI scientists and researchers must develop interpretable AI-based solutions. This article provides an overview of relevant articles in the field of machine learning and interpretable AI, which helps to understand the advantages and disadvantages of using AI in psychiatry disorder detection applications.Comment: 12 page

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Exploring Emotion Recognition for VR-EBT Using Deep Learning on a Multimodal Physiological Framework

    Get PDF
    Post-Traumatic Stress Disorder is a mental health condition that affects a growing number of people. A variety of PTSD treatment methods exist, however current research indicates that virtual reality exposure-based treatment has become more prominent in its use.Yet the treatment method can be costly and time consuming for clinicians and ultimately for the healthcare system. PTSD can be delivered in a more sustainable way using virtual reality. This is accomplished by using machine learning to autonomously adapt virtual reality scene changes. The use of machine learning will also support a more efficient way of inserting positive stimuli in virtual reality scenes. Machine learning has been used in medical areas such as rare diseases, oncology, medical data classification and psychiatry. This research used a public dataset that contained physiological recordings and emotional responses. The dataset was used to train a deep neural network, and a convolutional neural network to predict an individual’s valence, arousal and dominance. The results presented indicate that the deep neural network had the highest overall mean bounded regression accuracy and the lowest computational time
    • 

    corecore