8,270 research outputs found

    Requirements for Explainability and Acceptance of Artificial Intelligence in Collaborative Work

    Full text link
    The increasing prevalence of Artificial Intelligence (AI) in safety-critical contexts such as air-traffic control leads to systems that are practical and efficient, and to some extent explainable to humans to be trusted and accepted. The present structured literature analysis examines n = 236 articles on the requirements for the explainability and acceptance of AI. Results include a comprehensive review of n = 48 articles on information people need to perceive an AI as explainable, the information needed to accept an AI, and representation and interaction methods promoting trust in an AI. Results indicate that the two main groups of users are developers who require information about the internal operations of the model and end users who require information about AI results or behavior. Users' information needs vary in specificity, complexity, and urgency and must consider context, domain knowledge, and the user's cognitive resources. The acceptance of AI systems depends on information about the system's functions and performance, privacy and ethical considerations, as well as goal-supporting information tailored to individual preferences and information to establish trust in the system. Information about the system's limitations and potential failures can increase acceptance and trust. Trusted interaction methods are human-like, including natural language, speech, text, and visual representations such as graphs, charts, and animations. Our results have significant implications for future human-centric AI systems being developed. Thus, they are suitable as input for further application-specific investigations of user needs

    Development of Porous Rubber Pavement for the Canadian Climate

    Get PDF
    Permeable pavement usage in North America has increased over the last decade as a viable stormwater management system. Porous Rubber Pavement (PRP) is a new material in this category which has been currently utilized as a pavement surface material for low-traffic areas and pedestrian walkways. This material consists of recycled crumb rubber aggregates, granite aggregates and polyurethane as a binder and is proportioned to attain a very high percentage of interconnected air voids (up to 45%). As a new pavement material in North America, the properties and performance of PRP are not thoroughly understood for cold climate conditions. This research aimed to understand the properties and performance of PRP and improve its performance as a pavement surface material for the Canadian climate. This objective is achieved through an evaluation of existing sites and mixes, developing new mixes through an experimental design process, and evaluating new mixes in the laboratory facilities. Some of the mixes were selected to apply in the trial section to assess field performance. Finally, recommendations and guidelines are developed for this climatic zone. Through the experimental design, four new mixes were developed using different proportions of stone aggregates, rubber aggregates and polyurethane binder. Also, using the proportion of the Control Mix, four polyurethane binders were used to make four different mixes to determine the different binder effects in PRPs. In the next stage of research, two trial sections were constructed using selected mixes along with the Control Mix. In addition, samples were also prepared from the field mixes to test their properties in the laboratory. Then the field performance of the various mixes was evaluated over a series of months. They were initially tested immediately following construction before fully opening for traffic. Then three weeks after construction and after seven months when the sections had experienced their first winter. Preliminary field investigations showed that with the current commercial mix, the achieved elastic modulus of PRP surfaces ranged between 37 MPa and 33 MPa. Besides, frictional values ranged between 57 BPN and 74 BPN. Higher IRI values were calculated for both sites, ranging between 7.56 m/km to 15.77 m/km. The average infiltration rate for the pavement surface areas was found to be 30836 mm/hr. The mechanical properties and durability of the Control Mix and newly developed mixes were investigated. The tensile and compressive strength of the mixes were found to be higher when the percentages of stone aggregates and binders were increased in the mixes. Additionally, an increase in air voids in the samples reduced the materials' tensile and compressive strength. Concerning the types of binder and sources, the obtained results showed no considerable influence of different types of binder in compressive strength test results, whereas binder sources influenced the tensile strength of the PRP materials. PRP samples with varying compositions retained more than 70% of their tensile strength after conditioning with five freeze-thaw cycles. However, due to the variety of binders used, retained tensile strength for PRP samples varied, and some showed retained tensile strength below 70%. The durability study showed that the granite stones that were used for all the sample preparation were not strong enough to withstand higher abrasion loss. However, PRPs with different compositions showed good rutting resistance, ranging from 0.3mm to 2.8mm in different mixes. Moisture-induced damage, stripping related abrasion was also found to be very small in PRP mixes, ranging from 2.6% to 0.1%. Also, the use of different binders from different sources showed that the B2—aliphatic binder could withstand more rutting than other binders. A Los Angeles abrasion tester tested unconditioned and conditioned samples to determine the materials' ravelling resistance. The result showed that abrasion loss increased in the samples after conditioning with five freeze-thaw cycles. However, it was consistent with the mix types. On the other hand, abrasion loss of samples with different binders occurred differently in the conditioned and unconditioned situations and was inconsistent in the mixes. Subgrade samples were collected from sites A and B during the trial section construction. The bearing capacity of subgrade soil for Site B was found to be higher than that of Site A. Subsequently, the performance of the mixes in the sections was evaluated through a series of field testing. The LWD results showed that the stiffness modulus differed for the same mixes at Site A and Site B. Besides, all the mixes showed higher stiffness in the 2nd field test than the 1st since compaction occurred on the pavement after opening for traffic. Nevertheless, after experiencing their first winter, a reduction in stiffness was observed for all mixes in the 3rd test. The BPT test revealed that a higher frictional value of PRP mixes was associated with a higher percentage of rubber aggregates and a lower percentage of binder in the mixes. At the same time, a reduction in BPN values was observed in the 2nd test than in the 1st since the sections were further compacted and polished after opening for traffic. In addition, the surface ravelling and transported loose particles affected the frictional values in the 3rd test, increasing the BPN numbers. Initial rut depths on Site A for different mixes ranged from -7.0 mm to -8.7mm, and the range was -5.8 mm to -10.7mm for Site B. However, after fully opening for traffic, greater rut depths were observed on each section due to the additional compaction under the wheel paths. The permeability of the PRP sections ranged from 28368 mm/h to 45605 mm/h, which is higher than the highest rainfall rate in Canada (298.8 mm/h). However, most of the sections showed higher permeability in the 2nd test. After the first winter, the permeability of some of the sections was found to be further increased, whereas others were found to be decreased due to the influence of site surroundings. In the 1st and 2nd field tests, no visible surface distress was observed at Site A and Site B. A small amount of surface distress was observed after the first winter (seven months after the construction), which included a slight loss of coarse aggregate, minor ravelling, small cracking, and rutting. Throughout the trial section construction process, it was also observed that by improving the construction methods and making slight modifications during the construction process (like increased compaction), the performance of PRPs could be further enhanced. Finally, a set of recommendations and guidelines were developed for using the PRP in the Canadian climate

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Measurement of the Environmental Impact of Materials

    Get PDF
    Throughout their life cycles—from production, usage, through to disposal—materials and products interact with the environment (water, soil, and air). At the same time, they are exposed to environmental influences and, through their emissions, have an impact on the environment, people, and health. Accelerated experimental testing processes can be used to predict the long-term environmental consequences of innovative products before these actually enter the environment. We are living in a material world. Building materials, geosynthetics, wooden toys, soil, nanomaterials, composites, wastes and more are research subjects examined by the authors of this book. The interactions of materials with the environment are manifold. Therefore, it is important to assess the environmental impact of these interactions. Some answers to how this task can be achieved are given in this Special Issue

    Proceedings of FORM 2022. Construction The Formation of Living Environment

    Get PDF
    This study examines the integration of building information modelling (BIM) technologies in operation & maintenance stage in the system of managing real estate that helps to reduce transaction costs. The approach and method are based on Digital Twin technology and Model Based System Engineering (MBSE) approach. The results of the development of a service for digital facility management and digital expertise are presented. The connection between physical and digital objects is conceptualized

    Review of Methodologies to Assess Bridge Safety During and After Floods

    Get PDF
    This report summarizes a review of technologies used to monitor bridge scour with an emphasis on techniques appropriate for testing during and immediately after design flood conditions. The goal of this study is to identify potential technologies and strategies for Illinois Department of Transportation that may be used to enhance the reliability of bridge safety monitoring during floods from local to state levels. The research team conducted a literature review of technologies that have been explored by state departments of transportation (DOTs) and national agencies as well as state-of-the-art technologies that have not been extensively employed by DOTs. This review included informational interviews with representatives from DOTs and relevant industry organizations. Recommendations include considering (1) acquisition of tethered kneeboard or surf ski-mounted single-beam sonars for rapid deployment by local agencies, (2) acquisition of remote-controlled vessels mounted with single-beam and side-scan sonars for statewide deployment, (3) development of large-scale particle image velocimetry systems using remote-controlled drones for stream velocity and direction measurement during floods, (4) physical modeling to develop Illinois-specific hydrodynamic loading coefficients for Illinois bridges during flood conditions, and (5) development of holistic risk-based bridge assessment tools that incorporate structural, geotechnical, hydraulic, and scour measurements to provide rapid feedback for bridge closure decisions.IDOT-R27-SP50Ope

    Mathematical Modeling of Biological Systems

    Get PDF
    Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship
    • …
    corecore