1,911 research outputs found

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015

    Is Simple Better? Revisiting Non-linear Matrix Factorization for Learning Incomplete Ratings

    Full text link
    Matrix factorization techniques have been widely used as a method for collaborative filtering for recommender systems. In recent times, different variants of deep learning algorithms have been explored in this setting to improve the task of making a personalized recommendation with user-item interaction data. The idea that the mapping between the latent user or item factors and the original features is highly nonlinear suggest that classical matrix factorization techniques are no longer sufficient. In this paper, we propose a multilayer nonlinear semi-nonnegative matrix factorization method, with the motivation that user-item interactions can be modeled more accurately using a linear combination of non-linear item features. Firstly, we learn latent factors for representations of users and items from the designed multilayer nonlinear Semi-NMF approach using explicit ratings. Secondly, the architecture built is compared with deep-learning algorithms like Restricted Boltzmann Machine and state-of-the-art Deep Matrix factorization techniques. By using both supervised rate prediction task and unsupervised clustering in latent item space, we demonstrate that our proposed approach achieves better generalization ability in prediction as well as comparable representation ability as deep matrix factorization in the clustering task.Comment: version

    Group invariance principles for causal generative models

    Full text link
    The postulate of independence of cause and mechanism (ICM) has recently led to several new causal discovery algorithms. The interpretation of independence and the way it is utilized, however, varies across these methods. Our aim in this paper is to propose a group theoretic framework for ICM to unify and generalize these approaches. In our setting, the cause-mechanism relationship is assessed by comparing it against a null hypothesis through the application of random generic group transformations. We show that the group theoretic view provides a very general tool to study the structure of data generating mechanisms with direct applications to machine learning.Comment: 16 pages, 6 figure

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient

    Finding the global semantic representation in GAN through Frechet Mean

    Full text link
    The ideally disentangled latent space in GAN involves the global representation of latent space with semantic attribute coordinates. In other words, considering that this disentangled latent space is a vector space, there exists the global semantic basis where each basis component describes one attribute of generated images. In this paper, we propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs. This semantic basis represents sample-independent meaningful perturbations that change the same semantic attribute of an image on the entire latent space. The proposed global basis, called Fr\'echet basis, is derived by introducing Fr\'echet mean to the local semantic perturbations in a latent space. Fr\'echet basis is discovered in two stages. First, the global semantic subspace is discovered by the Fr\'echet mean in the Grassmannian manifold of the local semantic subspaces. Second, Fr\'echet basis is found by optimizing a basis of the semantic subspace via the Fr\'echet mean in the Special Orthogonal Group. Experimental results demonstrate that Fr\'echet basis provides better semantic factorization and robustness compared to the previous methods. Moreover, we suggest the basis refinement scheme for the previous methods. The quantitative experiments show that the refined basis achieves better semantic factorization while constrained on the same semantic subspace given by the previous method.Comment: 25 pages, 21 figure
    corecore