1,227 research outputs found

    Energy-based Models for Video Anomaly Detection

    Full text link
    Automated detection of abnormalities in data has been studied in research area in recent years because of its diverse applications in practice including video surveillance, industrial damage detection and network intrusion detection. However, building an effective anomaly detection system is a non-trivial task since it requires to tackle challenging issues of the shortage of annotated data, inability of defining anomaly objects explicitly and the expensive cost of feature engineering procedure. Unlike existing appoaches which only partially solve these problems, we develop a unique framework to cope the problems above simultaneously. Instead of hanlding with ambiguous definition of anomaly objects, we propose to work with regular patterns whose unlabeled data is abundant and usually easy to collect in practice. This allows our system to be trained completely in an unsupervised procedure and liberate us from the need for costly data annotation. By learning generative model that capture the normality distribution in data, we can isolate abnormal data points that result in low normality scores (high abnormality scores). Moreover, by leverage on the power of generative networks, i.e. energy-based models, we are also able to learn the feature representation automatically rather than replying on hand-crafted features that have been dominating anomaly detection research over many decades. We demonstrate our proposal on the specific application of video anomaly detection and the experimental results indicate that our method performs better than baselines and are comparable with state-of-the-art methods in many benchmark video anomaly detection datasets

    Crowd Management in Open Spaces

    Full text link
    Crowd analysis and management is a challenging problem to ensure public safety and security. For this purpose, many techniques have been proposed to cope with various problems. However, the generalization capabilities of these techniques is limited due to ignoring the fact that the density of crowd changes from low to extreme high depending on the scene under observation. We propose robust feature based approach to deal with the problem of crowd management for people safety and security. We have evaluated our method using a benchmark dataset and have presented details analysis

    Detection of Unknown Anomalies in Streaming Videos with Generative Energy-based Boltzmann Models

    Full text link
    Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in practical setting: limited labeled data, ambiguous definition of "abnormal" and expensive feature engineering steps. This paper introduces a unified detection framework to handle these challenges using energy-based models, which are powerful tools for unsupervised representation learning. Our proposed models are firstly trained on unlabeled raw pixels of image frames from an input video rather than hand-crafted visual features; and then identify the locations of abnormal objects based on the errors between the input video and its reconstruction produced by the models. To handle video stream, we develop an online version of our framework, wherein the model parameters are updated incrementally with the image frames arriving on the fly. Our experiments show that our detectors, using Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) as core modules, achieve superior anomaly detection performance to unsupervised baselines and obtain accuracy comparable with the state-of-the-art approaches when evaluating at the pixel-level. More importantly, we discover that our system trained with DBMs is able to simultaneously perform scene clustering and scene reconstruction. This capacity not only distinguishes our method from other existing detectors but also offers a unique tool to investigate and understand how the model works.Comment: This manuscript is under consideration at Pattern Recognition Letter

    Street Scene: A new dataset and evaluation protocol for video anomaly detection

    Full text link
    Progress in video anomaly detection research is currently slowed by small datasets that lack a wide variety of activities as well as flawed evaluation criteria. This paper aims to help move this research effort forward by introducing a large and varied new dataset called Street Scene, as well as two new evaluation criteria that provide a better estimate of how an algorithm will perform in practice. In addition to the new dataset and evaluation criteria, we present two variations of a novel baseline video anomaly detection algorithm and show they are much more accurate on Street Scene than two state-of-the-art algorithms from the literature.Comment: accepted to WACV 202

    Unsupervised Online Anomaly Detection On Irregularly Sampled Or Missing Valued Time-Series Data Using LSTM Networks

    Full text link
    We study anomaly detection and introduce an algorithm that processes variable length, irregularly sampled sequences or sequences with missing values. Our algorithm is fully unsupervised, however, can be readily extended to supervised or semisupervised cases when the anomaly labels are present as remarked throughout the paper. Our approach uses the Long Short Term Memory (LSTM) networks in order to extract temporal features and find the most relevant feature vectors for anomaly detection. We incorporate the sampling time information to our model by modulating the standard LSTM model with time modulation gates. After obtaining the most relevant features from the LSTM, we label the sequences using a Support Vector Data Descriptor (SVDD) model. We introduce a loss function and then jointly optimize the feature extraction and sequence processing mechanisms in an end-to-end manner. Through this joint optimization, the LSTM extracts the most relevant features for anomaly detection later to be used in the SVDD, hence completely removes the need for feature selection by expert knowledge. Furthermore, we provide a training algorithm for the online setup, where we optimize our model parameters with individual sequences as the new data arrives. Finally, on real-life datasets, we show that our model significantly outperforms the standard approaches thanks to its combination of LSTM with SVDD and joint optimization.Comment: 11 page

    Fence GAN: Towards Better Anomaly Detection

    Full text link
    Anomaly detection is a classical problem where the aim is to detect anomalous data that do not belong to the normal data distribution. Current state-of-the-art methods for anomaly detection on complex high-dimensional data are based on the generative adversarial network (GAN). However, the traditional GAN loss is not directly aligned with the anomaly detection objective: it encourages the distribution of the generated samples to overlap with the real data and so the resulting discriminator has been found to be ineffective as an anomaly detector. In this paper, we propose simple modifications to the GAN loss such that the generated samples lie at the boundary of the real data distribution. With our modified GAN loss, our anomaly detection method, called Fence GAN (FGAN), directly uses the discriminator score as an anomaly threshold. Our experimental results using the MNIST, CIFAR10 and KDD99 datasets show that Fence GAN yields the best anomaly classification accuracy compared to state-of-the-art methods

    DAP3D-Net: Where, What and How Actions Occur in Videos?

    Full text link
    Action parsing in videos with complex scenes is an interesting but challenging task in computer vision. In this paper, we propose a generic 3D convolutional neural network in a multi-task learning manner for effective Deep Action Parsing (DAP3D-Net) in videos. Particularly, in the training phase, action localization, classification and attributes learning can be jointly optimized on our appearancemotion data via DAP3D-Net. For an upcoming test video, we can describe each individual action in the video simultaneously as: Where the action occurs, What the action is and How the action is performed. To well demonstrate the effectiveness of the proposed DAP3D-Net, we also contribute a new Numerous-category Aligned Synthetic Action dataset, i.e., NASA, which consists of 200; 000 action clips of more than 300 categories and with 33 pre-defined action attributes in two hierarchical levels (i.e., low-level attributes of basic body part movements and high-level attributes related to action motion). We learn DAP3D-Net using the NASA dataset and then evaluate it on our collected Human Action Understanding (HAU) dataset. Experimental results show that our approach can accurately localize, categorize and describe multiple actions in realistic videos

    Adversarially Learned One-Class Classifier for Novelty Detection

    Full text link
    Novelty detection is the process of identifying the observation(s) that differ in some respect from the training observations (the target class). In reality, the novelty class is often absent during training, poorly sampled or not well defined. Therefore, one-class classifiers can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end deep network is a cumbersome task. In this paper, inspired by the success of generative adversarial networks for training deep models in unsupervised and semi-supervised settings, we propose an end-to-end architecture for one-class classification. Our architecture is composed of two deep networks, each of which trained by competing with each other while collaborating to understand the underlying concept in the target class, and then classify the testing samples. One network works as the novelty detector, while the other supports it by enhancing the inlier samples and distorting the outliers. The intuition is that the separability of the enhanced inliers and distorted outliers is much better than deciding on the original samples. The proposed framework applies to different related applications of anomaly and outlier detection in images and videos. The results on MNIST and Caltech-256 image datasets, along with the challenging UCSD Ped2 dataset for video anomaly detection illustrate that our proposed method learns the target class effectively and is superior to the baseline and state-of-the-art methods.Comment: CVPR 2018 Pape

    Plug-and-Play Anomaly Detection with Expectation Maximization Filtering

    Full text link
    Anomaly detection in crowds enables early rescue response. A plug-and-play smart camera for crowd surveillance has numerous constraints different from typical anomaly detection: the training data cannot be used iteratively; there are no training labels; and training and classification needs to be performed simultaneously. We tackle all these constraints with our approach in this paper. We propose a Core Anomaly-Detection (CAD) neural network which learns the motion behavior of objects in the scene with an unsupervised method. On average over standard datasets, CAD with a single epoch of training shows a percentage increase in Area Under the Curve (AUC) of 4.66% and 4.9% compared to the best results with convolutional autoencoders and convolutional LSTM-based methods, respectively. With a single epoch of training, our method improves the AUC by 8.03% compared to the convolutional LSTM-based approach. We also propose an Expectation Maximization filter which chooses samples for training the core anomaly-detection network. The overall framework improves the AUC compared to future frame prediction-based approach by 24.87% when crowd anomaly detection is performed on a video stream. We believe our work is the first step towards using deep learning methods with autonomous plug-and-play smart cameras for crowd anomaly detection

    Video Anomaly Detection and Localization via Gaussian Mixture Fully Convolutional Variational Autoencoder

    Full text link
    We present a novel end-to-end partially supervised deep learning approach for video anomaly detection and localization using only normal samples. The insight that motivates this study is that the normal samples can be associated with at least one Gaussian component of a Gaussian Mixture Model (GMM), while anomalies either do not belong to any Gaussian component. The method is based on Gaussian Mixture Variational Autoencoder, which can learn feature representations of the normal samples as a Gaussian Mixture Model trained using deep learning. A Fully Convolutional Network (FCN) that does not contain a fully-connected layer is employed for the encoder-decoder structure to preserve relative spatial coordinates between the input image and the output feature map. Based on the joint probabilities of each of the Gaussian mixture components, we introduce a sample energy based method to score the anomaly of image test patches. A two-stream network framework is employed to combine the appearance and motion anomalies, using RGB frames for the former and dynamic flow images, for the latter. We test our approach on two popular benchmarks (UCSD Dataset and Avenue Dataset). The experimental results verify the superiority of our method compared to the state of the arts
    • …
    corecore