2,191 research outputs found

    Aesthetic-Driven Image Enhancement by Adversarial Learning

    Full text link
    We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement

    User Constrained Thumbnail Generation using Adaptive Convolutions

    Full text link
    Thumbnails are widely used all over the world as a preview for digital images. In this work we propose a deep neural framework to generate thumbnails of any size and aspect ratio, even for unseen values during training, with high accuracy and precision. We use Global Context Aggregation (GCA) and a modified Region Proposal Network (RPN) with adaptive convolutions to generate thumbnails in real time. GCA is used to selectively attend and aggregate the global context information from the entire image while the RPN is used to predict candidate bounding boxes for the thumbnail image. Adaptive convolution eliminates the problem of generating thumbnails of various aspect ratios by using filter weights dynamically generated from the aspect ratio information. The experimental results indicate the superior performance of the proposed model over existing state-of-the-art techniques.Comment: International Conference on Acoustics, Speech, and Signal Processing(ICASSP), 201

    Automatic Image Cropping and Selection using Saliency: an Application to Historical Manuscripts

    Get PDF
    Automatic image cropping techniques are particularly important to improve the visual quality of cropped images and can be applied to a wide range of applications such as photo-editing, image compression, and thumbnail selection. In this paper, we propose a saliency-based image cropping method which produces significant cropped images by only relying on the corresponding saliency maps. Experiments on standard image cropping datasets demonstrate the benefit of the proposed solution with respect to other cropping methods. Moreover, we present an image selection method that can be effectively applied to automatically select the most representative pages of historical manuscripts thus improving the navigation of historical digital libraries

    Image Cropping with Composition and Saliency Aware Aesthetic Score Map

    Full text link
    Aesthetic image cropping is a practical but challenging task which aims at finding the best crops with the highest aesthetic quality in an image. Recently, many deep learning methods have been proposed to address this problem, but they did not reveal the intrinsic mechanism of aesthetic evaluation. In this paper, we propose an interpretable image cropping model to unveil the mystery. For each image, we use a fully convolutional network to produce an aesthetic score map, which is shared among all candidate crops during crop-level aesthetic evaluation. Then, we require the aesthetic score map to be both composition-aware and saliency-aware. In particular, the same region is assigned with different aesthetic scores based on its relative positions in different crops. Moreover, a visually salient region is supposed to have more sensitive aesthetic scores so that our network can learn to place salient objects at more proper positions. Such an aesthetic score map can be used to localize aesthetically important regions in an image, which sheds light on the composition rules learned by our model. We show the competitive performance of our model in the image cropping task on several benchmark datasets, and also demonstrate its generality in real-world applications.Comment: Accepted by AAAI 2
    • …
    corecore