2,916 research outputs found

    Learning-based Single-step Quantitative Susceptibility Mapping Reconstruction Without Brain Extraction

    Full text link
    Quantitative susceptibility mapping (QSM) estimates the underlying tissue magnetic susceptibility from MRI gradient-echo phase signal and typically requires several processing steps. These steps involve phase unwrapping, brain volume extraction, background phase removal and solving an ill-posed inverse problem. The resulting susceptibility map is known to suffer from inaccuracy near the edges of the brain tissues, in part due to imperfect brain extraction, edge erosion of the brain tissue and the lack of phase measurement outside the brain. This inaccuracy has thus hindered the application of QSM for measuring the susceptibility of tissues near the brain edges, e.g., quantifying cortical layers and generating superficial venography. To address these challenges, we propose a learning-based QSM reconstruction method that directly estimates the magnetic susceptibility from total phase images without the need for brain extraction and background phase removal, referred to as autoQSM. The neural network has a modified U-net structure and is trained using QSM maps computed by a two-step QSM method. 209 healthy subjects with ages ranging from 11 to 82 years were employed for patch-wise network training. The network was validated on data dissimilar to the training data, e.g. in vivo mouse brain data and brains with lesions, which suggests that the network has generalized and learned the underlying mathematical relationship between magnetic field perturbation and magnetic susceptibility. AutoQSM was able to recover magnetic susceptibility of anatomical structures near the edges of the brain including the veins covering the cortical surface, spinal cord and nerve tracts near the mouse brain boundaries. The advantages of high-quality maps, no need for brain volume extraction and high reconstruction speed demonstrate its potential for future applications.Comment: 26 page

    Panoramic Annular Localizer: Tackling the Variation Challenges of Outdoor Localization Using Panoramic Annular Images and Active Deep Descriptors

    Full text link
    Visual localization is an attractive problem that estimates the camera localization from database images based on the query image. It is a crucial task for various applications, such as autonomous vehicles, assistive navigation and augmented reality. The challenging issues of the task lie in various appearance variations between query and database images, including illumination variations, dynamic object variations and viewpoint variations. In order to tackle those challenges, Panoramic Annular Localizer into which panoramic annular lens and robust deep image descriptors are incorporated is proposed in this paper. The panoramic annular images captured by the single camera are processed and fed into the NetVLAD network to form the active deep descriptor, and sequential matching is utilized to generate the localization result. The experiments carried on the public datasets and in the field illustrate the validation of the proposed system.Comment: Accepted by ITSC 201

    A Novel Phase Unwrapping Method for Low Coherence Interferograms in Coal Mining Areas Based on a Fully Convolutional Neural Network

    Get PDF
    \ua9 2008-2012 IEEE. Subsidence caused by underground coal mining activities seriously threatens the safety of surface buildings, and interferometric synthetic aperture radar has proven to be one effective tool for subsidence monitoring in mining areas. However, the environmental characteristics of mining areas and the deformation behavior of mining subsidence lead to low coherence of interferogram. In this case, traditional phase unwrapping methods have problems, such as low accuracy, and often fail to obtain correct deformation information. Therefore, a novel phase unwrapping method is proposed using a channel-attention-based fully convolutional neural network (FCNet-CA) for low coherence mining areas, which integrates multiscale feature extraction block, bottleneck block, and can better extract interferometric phase features from the noise. In addition, based on the mining subsidence prediction model and transfer learning method, a new sample generation strategy is proposed, making the training dataset feature information more diverse and closer to the actual scene. Simulation experiment results demonstrate that FCNet-CA can restore the deformation pattern and magnitude in scenarios with high noise and fringe density (even if the phase gradient exceeds π). FCNet-CA was also applied to the Shilawusu coal mining area in Inner Mongolia Autonomous Region, China. The experimental results show that, compared with the root mean square error (RMSE) of phase unwrapping network and minimum cost flow, the RMSE of FCNet-CA in the strike direction is reduced by 67.9% and 29.5%, respectively, and by 72.4% and 50.9% in the dip direction, respectively. The actual experimental results further verify the feasibility and effectiveness of FCNet-CA

    Deep Learning-enabled Spatial Phase Unwrapping for 3D Measurement

    Full text link
    In terms of 3D imaging speed and system cost, the single-camera system projecting single-frequency patterns is the ideal option among all proposed Fringe Projection Profilometry (FPP) systems. This system necessitates a robust spatial phase unwrapping (SPU) algorithm. However, robust SPU remains a challenge in complex scenes. Quality-guided SPU algorithms need more efficient ways to identify the unreliable points in phase maps before unwrapping. End-to-end deep learning SPU methods face generality and interpretability problems. This paper proposes a hybrid method combining deep learning and traditional path-following for robust SPU in FPP. This hybrid SPU scheme demonstrates better robustness than traditional quality-guided SPU methods, better interpretability than end-to-end deep learning scheme, and generality on unseen data. Experiments on the real dataset of multiple illumination conditions and multiple FPP systems differing in image resolution, the number of fringes, fringe direction, and optics wavelength verify the effectiveness of the proposed method.Comment: 26 page
    • …
    corecore