22,228 research outputs found

    Resilient routing mechanism for wireless sensor networks with deep learning link reliability prediction

    Get PDF
    Wireless sensor networks play an important role in Internet of Things systems and services but are prone and vulnerable to poor communication channel quality and network attacks. In this paper we are motivated to propose resilient routing algorithms for wireless sensor networks. The main idea is to exploit the link reliability along with other traditional routing metrics for routing algorithm design. We proposed firstly a novel deep-learning based link prediction model, which jointly exploits Weisfeiler-Lehman kernel and Dual Convolutional Neural Network (WL-DCNN) for lightweight subgraph extraction and labelling. It is leveraged to enhance self-learning ability of mining topological features with strong generality. Experimental results demonstrate that WL-DCNN outperforms all the studied 9 baseline schemes over 6 open complex networks datasets. The performance of AUC (Area Under the receiver operating characteristic Curve) is improved by 16% on average. Furthermore, we apply the WL-DCNN model in the design of resilient routing for wireless sensor networks, which can adaptively capture topological features to determine the reliability of target links, especially under the situations of routing table suffering from attack with varying degrees of damage to local link community. It is observed that, compared with other classical routing baselines, the proposed routing algorithm with link reliability prediction module can effectively improve the resilience of sensor networks while reserving high-energy-efficiency

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore