451 research outputs found

    Contactless WiFi Sensing and Monitoring for Future Healthcare:Emerging Trends, Challenges and Opportunities

    Get PDF
    WiFi sensing has recently received significant interest from academics, industry, healthcare professionals and other caregivers (including family members) as a potential mechanism to monitor our aging population at distance, without deploying devices on users bodies. In particular, these methods have gained significant interest to efficiently detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems stems from its practical deployments in indoor settings and compliance from monitored persons, unlike other sensors such as wearables, camera-based, and acoustic-based solutions. This paper reviews state-of-the-art research on collecting and analysing channel state information, extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, untapped areas, and related trends.This work aims to provide an overarching view in understanding the technology and discusses its uses-cases from a perspective that considers hardware, advanced signal processing, and data acquisition

    Respiration and Activity Detection based on Passive Radio Sensing in Home Environments

    Get PDF
    The pervasive deployment of connected devices in modern society has significantly changed the nature of the wireless landscape, especially in the license free industrial, scientific and medical (ISM) bands. This paper introduces a deep learning enabled passive radio sensing method that can monitor human respiration and daily activities through leveraging unplanned and ever-present wireless bursts in the ISM frequency band, and can be employed as an additional data input within healthcare informatics. Wireless connected biomedical sensors (Medical Things) rely on coding and modulating of the sensor data onto wireless (radio) bursts which comply with specific physical layer standards like 802.11, 802.15.1 or 802.15.4. The increasing use of these unplanned connected sensors has led to a pell-mell of radio bursts which limit the capacity and robustness of communication channels to deliver data, whilst also increasing inter-system interference. This paper presents a novel methodology to disentangle the chaotic bursts in congested radio environments in order to provide healthcare informatics. The radio bursts are treated as pseudo noise waveforms which eliminate the requirement to extract embedded information through signal demodulation or decoding. Instead, we leverage the phase and frequency components of these radio bursts in conjunction with cross ambiguity function (CAF) processing and a Deep Transfer Network (DTN). We use 2.4GHz 802.11 (WiFi) signals to demonstrate experimentally the capability of this technique for human respiration detection (including through-the-wall), and classifying everyday but complex human motions such as standing, sitting and falling

    WiFi Sensing at the Edge Towards Scalable On-Device Wireless Sensing Systems

    Get PDF
    WiFi sensing offers a powerful method for tracking physical activities using the radio-frequency signals already found throughout our homes and offices. This novel sensing modality offers continuous and non-intrusive activity tracking since sensing can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight, and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous technology in our computers, our smartphones, and even in low-cost Internet of Things devices. In this work, we consider how the ubiquity of these low-cost WiFi devices offer an unparalleled opportunity for improving the scalability of wireless sensing systems. Thus far, WiFi sensing research assumes costly offline computing resources and hardware for training machine learning models and for performing model inference. To improve the scalability of WiFi sensing systems, this dissertation introduces techniques for improving machine learning at the edge by thoroughly surveying and evaluating signal preprocessing and edge machine learning techniques. Additionally, we introduce the use of federated learning for collaboratively training machine learning models with WiFi data only available on edge devices. We then consider privacy and security concerns of WiFi sensing by demonstrating possible adversarial surveillance attacks. To combat these attacks, we propose a method for leveraging spatially distributed antennas to prevent eavesdroppers from performing adversarial surveillance while still enabling and even improving the sensing capabilities of allowed WiFi sensing devices within our environments. The overall goal throughout this work is to demonstrate that WiFi sensing can become a ubiquitous and secure sensing option through the use of on-device computation on low-cost edge devices

    SoK: Inference Attacks and Defenses in Human-Centered Wireless Sensing

    Full text link
    Human-centered wireless sensing aims to understand the fine-grained environment and activities of a human using the diverse wireless signals around her. The wireless sensing community has demonstrated the superiority of such techniques in many applications such as smart homes, human-computer interactions, and smart cities. Like many other technologies, wireless sensing is also a double-edged sword. While the sensed information about a human can be used for many good purposes such as enhancing life quality, an adversary can also abuse it to steal private information about the human (e.g., location, living habits, and behavioral biometric characteristics). However, the literature lacks a systematic understanding of the privacy vulnerabilities of wireless sensing and the defenses against them. In this work, we aim to bridge this gap. First, we propose a framework to systematize wireless sensing-based inference attacks. Our framework consists of three key steps: deploying a sniffing device, sniffing wireless signals, and inferring private information. Our framework can be used to guide the design of new inference attacks since different attacks can instantiate these three steps differently. Second, we propose a defense-in-depth framework to systematize defenses against such inference attacks. The prevention component of our framework aims to prevent inference attacks via obfuscating the wireless signals around a human, while the detection component aims to detect and respond to attacks. Third, based on our attack and defense frameworks, we identify gaps in the existing literature and discuss future research directions

    IoT Platform for COVID-19 Prevention and Control: A Survey

    Full text link
    As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and vaccines, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.Comment: 12 pages; Submitted to IEEE Internet of Things Journa

    SiMWiSense: Simultaneous Multi-Subject Activity Classification Through Wi-Fi Signals

    Full text link
    Recent advances in Wi-Fi sensing have ushered in a plethora of pervasive applications in home surveillance, remote healthcare, road safety, and home entertainment, among others. Most of the existing works are limited to the activity classification of a single human subject at a given time. Conversely, a more realistic scenario is to achieve simultaneous, multi-subject activity classification. The first key challenge in that context is that the number of classes grows exponentially with the number of subjects and activities. Moreover, it is known that Wi-Fi sensing systems struggle to adapt to new environments and subjects. To address both issues, we propose SiMWiSense, the first framework for simultaneous multi-subject activity classification based on Wi-Fi that generalizes to multiple environments and subjects. We address the scalability issue by using the Channel State Information (CSI) computed from the device positioned closest to the subject. We experimentally prove this intuition by confirming that the best accuracy is experienced when the CSI computed by the transceiver positioned closest to the subject is used for classification. To address the generalization issue, we develop a brand-new few-shot learning algorithm named Feature Reusable Embedding Learning (FREL). Through an extensive data collection campaign in 3 different environments and 3 subjects performing 20 different activities simultaneously, we demonstrate that SiMWiSense achieves classification accuracy of up to 97%, while FREL improves the accuracy by 85% in comparison to a traditional Convolutional Neural Network (CNN) and up to 20% when compared to the state-of-the-art few-shot embedding learning (FSEL), by using only 15 seconds of additional data for each class. For reproducibility purposes, we share our 1TB dataset and code repository.Comment: This work has been accepted for publication in IEEE WoWMoM 202
    • …
    corecore