3,685 research outputs found

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Multimodal Polynomial Fusion for Detecting Driver Distraction

    Full text link
    Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.Comment: INTERSPEECH 201

    “Texting & Driving” Detection Using Deep Convolutional Neural Networks

    Get PDF
    The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate

    Automatic driver distraction detection using deep convolutional neural networks

    Get PDF
    Recently, the number of road accidents has been increased worldwide due to the distraction of the drivers. This rapid road crush often leads to injuries, loss of properties, even deaths of the people. Therefore, it is essential to monitor and analyze the driver's behavior during the driving time to detect the distraction and mitigate the number of road accident. To detect various kinds of behavior like- using cell phone, talking to others, eating, sleeping or lack of concentration during driving; machine learning/deep learning can play significant role. However, this process may need high computational capacity to train the model by huge number of training dataset. In this paper, we made an effort to develop CNN based method to detect distracted driver and identify the cause of distractions like talking, sleeping or eating by means of face and hand localization. Four architectures namely CNN, VGG-16, ResNet50 and MobileNetV2 have been adopted for transfer learning. To verify the effectiveness, the proposed model is trained with thousands of images from a publicly available dataset containing ten different postures or conditions of a distracted driver and analyzed the results using various performance metrics. The performance results showed that the pre-trained MobileNetV2 model has the best classification efficiency. © 2022 The Author(s
    • …
    corecore