11,417 research outputs found

    A Deep Hashing Learning Network

    Full text link
    Hashing-based methods seek compact and efficient binary codes that preserve the neighborhood structure in the original data space. For most existing hashing methods, an image is first encoded as a vector of hand-crafted visual feature, followed by a hash projection and quantization step to get the compact binary vector. Most of the hand-crafted features just encode the low-level information of the input, the feature may not preserve the semantic similarities of images pairs. Meanwhile, the hashing function learning process is independent with the feature representation, so the feature may not be optimal for the hashing projection. In this paper, we propose a supervised hashing method based on a well designed deep convolutional neural network, which tries to learn hashing code and compact representations of data simultaneously. The proposed model learn the binary codes by adding a compact sigmoid layer before the loss layer. Experiments on several image data sets show that the proposed model outperforms other state-of-the-art methods.Comment: 7 pages, 5 figure

    Neurons Merging Layer: Towards Progressive Redundancy Reduction for Deep Supervised Hashing

    Full text link
    Deep supervised hashing has become an active topic in information retrieval. It generates hashing bits by the output neurons of a deep hashing network. During binary discretization, there often exists much redundancy between hashing bits that degenerates retrieval performance in terms of both storage and accuracy. This paper proposes a simple yet effective Neurons Merging Layer (NMLayer) for deep supervised hashing. A graph is constructed to represent the redundancy relationship between hashing bits that is used to guide the learning of a hashing network. Specifically, it is dynamically learned by a novel mechanism defined in our active and frozen phases. According to the learned relationship, the NMLayer merges the redundant neurons together to balance the importance of each output neuron. Moreover, multiple NMLayers are progressively trained for a deep hashing network to learn a more compact hashing code from a long redundant code. Extensive experiments on four datasets demonstrate that our proposed method outperforms state-of-the-art hashing methods.Comment: Accepted by IJCAI 201

    Deep Policy Hashing Network with Listwise Supervision

    Full text link
    Deep-networks-based hashing has become a leading approach for large-scale image retrieval, which learns a similarity-preserving network to map similar images to nearby hash codes. The pairwise and triplet losses are two widely used similarity preserving manners for deep hashing. These manners ignore the fact that hashing is a prediction task on the list of binary codes. However, learning deep hashing with listwise supervision is challenging in 1) how to obtain the rank list of whole training set when the batch size of the deep network is always small and 2) how to utilize the listwise supervision. In this paper, we present a novel deep policy hashing architecture with two systems are learned in parallel: a query network and a shared and slowly changing database network. The following three steps are repeated until convergence: 1) the database network encodes all training samples into binary codes to obtain a whole rank list, 2) the query network is trained based on policy learning to maximize a reward that indicates the performance of the whole ranking list of binary codes, e.g., mean average precision (MAP), and 3) the database network is updated as the query network. Extensive evaluations on several benchmark datasets show that the proposed method brings substantial improvements over state-of-the-art hashing methods.Comment: 8 pages, accepted by ACM ICM

    SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

    Full text link
    Hashing methods have been widely used for efficient similarity retrieval on large scale image database. Traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing methods have shown better performance because the deep architectures generate more discriminative feature representations. However, these deep hashing methods are mainly designed for supervised scenarios, which only exploit the semantic similarity information, but ignore the underlying data structures. In this paper, we propose the semi-supervised deep hashing (SSDH) approach, to perform more effective hash function learning by simultaneously preserving semantic similarity and underlying data structures. The main contributions are as follows: (1) We propose a semi-supervised loss to jointly minimize the empirical error on labeled data, as well as the embedding error on both labeled and unlabeled data, which can preserve the semantic similarity and capture the meaningful neighbors on the underlying data structures for effective hashing. (2) A semi-supervised deep hashing network is designed to extensively exploit both labeled and unlabeled data, in which we propose an online graph construction method to benefit from the evolving deep features during training to better capture semantic neighbors. To the best of our knowledge, the proposed deep network is the first deep hashing method that can perform hash code learning and feature learning simultaneously in a semi-supervised fashion. Experimental results on 5 widely-used datasets show that our proposed approach outperforms the state-of-the-art hashing methods.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    Deep Reinforcement Learning for Image Hashing

    Full text link
    Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions independently, while ignore the correlations between different hashing functions that can promote the retrieval accuracy greatly. Inspired by the sequential decision ability of deep reinforcement learning, we propose a new Deep Reinforcement Learning approach for Image Hashing (DRLIH). Our proposed DRLIH approach models the hashing learning problem as a sequential decision process, which learns each hashing function by correcting the errors imposed by previous ones and promotes retrieval accuracy. To the best of our knowledge, this is the first work to address hashing problem from deep reinforcement learning perspective. The main contributions of our proposed DRLIH approach can be summarized as follows: (1) We propose a deep reinforcement learning hashing network. In the proposed network, we utilize recurrent neural network (RNN) as agents to model the hashing functions, which take actions of projecting images into binary codes sequentially, so that the current hashing function learning can take previous hashing functions' error into account. (2) We propose a sequential learning strategy based on proposed DRLIH. We define the state as a tuple of internal features of RNN's hidden layers and image features, which can reflect history decisions made by the agents. We also propose an action group method to enhance the correlation of hash functions in the same group. Experiments on three widely-used datasets demonstrate the effectiveness of our proposed DRLIH approach.Comment: 12 pages, submitted to IEEE Transactions on Multimedi

    Improved Search in Hamming Space using Deep Multi-Index Hashing

    Full text link
    Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. There has been considerable research on generating efficient image representation via the deep-network-based hashing methods. However, the issue of efficient searching in the deep representation space remains largely unsolved. To this end, we propose a simple yet efficient deep-network-based multi-index hashing method for simultaneously learning the powerful image representation and the efficient searching. To achieve these two goals, we introduce the multi-index hashing (MIH) mechanism into the proposed deep architecture, which divides the binary codes into multiple substrings. Due to the non-uniformly distributed codes will result in inefficiency searching, we add the two balanced constraints at feature-level and instance-level, respectively. Extensive evaluations on several benchmark image retrieval datasets show that the learned balanced binary codes bring dramatic speedups and achieve comparable performance over the existing baselines

    Deep Attention-guided Hashing

    Full text link
    With the rapid growth of multimedia data (e.g., image, audio and video etc.) on the web, learning-based hashing techniques such as Deep Supervised Hashing (DSH) have proven to be very efficient for large-scale multimedia search. The recent successes seen in Learning-based hashing methods are largely due to the success of deep learning-based hashing methods. However, there are some limitations to previous learning-based hashing methods (e.g., the learned hash codes containing repetitive and highly correlated information). In this paper, we propose a novel learning-based hashing method, named Deep Attention-guided Hashing (DAgH). DAgH is implemented using two stream frameworks. The core idea is to use guided hash codes which are generated by the hashing network of the first stream framework (called first hashing network) to guide the training of the hashing network of the second stream framework (called second hashing network). Specifically, in the first network, it leverages an attention network and hashing network to generate the attention-guided hash codes from the original images. The loss function we propose contains two components: the semantic loss and the attention loss. The attention loss is used to punish the attention network to obtain the salient region from pairs of images; in the second network, these attention-guided hash codes are used to guide the training of the second hashing network (i.e., these codes are treated as supervised labels to train the second network). By doing this, DAgH can make full use of the most critical information contained in images to guide the second hashing network in order to learn efficient hash codes in a true end-to-end fashion. Results from our experiments demonstrate that DAgH can generate high quality hash codes and it outperforms current state-of-the-art methods on three benchmark datasets, CIFAR-10, NUS-WIDE, and ImageNet.Comment: Accepted to IEEE ACCES

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods

    Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

    Full text link
    Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissimilar labels, which limits the retrieval performance. Generally, pair-wise or triplet losses not only suffer from expensive training costs but also lack in extracting sufficient semantic information. In this regard, we propose a novel deep supervised hashing model to learn more compact class-level similarity preserving binary codes. Our deep learning based model is motivated by deep metric learning that directly takes semantic labels as supervised information in training and generates corresponding discriminant hashing code. Specifically, a novel cubic constraint loss function based on Gaussian distribution is proposed, which preserves semantic variations while penalizes the overlap part of different classes in the embedding space. To address the discrete optimization problem introduced by binary codes, a two-step optimization strategy is proposed to provide efficient training and avoid the problem of gradient vanishing. Extensive experiments on four large-scale benchmark databases show that our model can achieve the state-of-the-art retrieval performance. Moreover, when training samples are limited, our method surpasses other supervised deep hashing methods with non-negligible margins

    Discrete Hashing with Deep Neural Network

    Full text link
    This paper addresses the problem of learning binary hash codes for large scale image search by proposing a novel hashing method based on deep neural network. The advantage of our deep model over previous deep model used in hashing is that our model contains necessary criteria for producing good codes such as similarity preserving, balance and independence. Another advantage of our method is that instead of relaxing the binary constraint of codes during the learning process as most previous works, in this paper, by introducing the auxiliary variable, we reformulate the optimization into two sub-optimization steps allowing us to efficiently solve binary constraints without any relaxation. The proposed method is also extended to the supervised hashing by leveraging the label information such that the learned binary codes preserve the pairwise label of inputs. The experimental results on three benchmark datasets show the proposed methods outperform state-of-the-art hashing methods
    • …
    corecore