181,598 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs

    Graph-based approaches for semi-supervised and cross-domain sentiment analysis

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of PhilosophyThe rapid development of Internet technologies has resulted in a sharp increase in the number of Internet users who create content online. Usergenerated content often represents people's opinions, thoughts, speculations and sentiments and is a valuable source of information for companies, organisations and individual users. This has led to the emergence of the eld of sentiment analysis, which deals with the automatic extraction and classi cation of sentiments expressed in texts. Sentiment analysis has been intensively researched over the last ten years, but there are still many issues to be addressed. One of the main problems is the lack of labelled data necessary to carry out precise supervised sentiment classi cation. In response, research has moved towards developing semi-supervised and crossdomain techniques. Semi-supervised approaches still need some labelled data and their e ectiveness is largely determined by the amount of these data, whereas cross-domain approaches usually perform poorly if training data are very di erent from test data. The majority of research on sentiment classi cation deals with the binary classi cation problem, although for many practical applications this rather coarse sentiment scale is not su cient. Therefore, it is crucial to design methods which are able to perform accurate multiclass sentiment classi cation. iii The aims of this thesis are to address the problem of limited availability of data in sentiment analysis and to advance research in semi-supervised and cross-domain approaches for sentiment classi cation, considering both binary and multiclass sentiment scales. We adopt graph-based learning as our main method and explore the most popular and widely used graph-based algorithm, label propagation. We investigate various ways of designing sentiment graphs and propose a new similarity measure which is unsupervised, easy to compute, does not require deep linguistic analysis and, most importantly, provides a good estimate for sentiment similarity as proved by intrinsic and extrinsic evaluations. The main contribution of this thesis is the development and evaluation of a graph-based sentiment analysis system that a) can cope with the challenges of limited data availability by using semi-supervised and crossdomain approaches b) is able to perform multiclass classi cation and c) achieves highly accurate results which are superior to those of most stateof- the-art semi-supervised and cross-domain systems. We systematically analyse and compare semi-supervised and cross-domain approaches in the graph-based framework and propose recommendations for selecting the most pertinent learning approach given the data available. Our recommendations are based on two domain characteristics, domain similarity and domain complexity, which were shown to have a signi cant impact on semi-supervised and cross-domain performance

    Multi-modal Embedding Fusion-based Recommender

    Full text link
    Recommendation systems have lately been popularized globally, with primary use cases in online interaction systems, with significant focus on e-commerce platforms. We have developed a machine learning-based recommendation platform, which can be easily applied to almost any items and/or actions domain. Contrary to existing recommendation systems, our platform supports multiple types of interaction data with multiple modalities of metadata natively. This is achieved through multi-modal fusion of various data representations. We deployed the platform into multiple e-commerce stores of different kinds, e.g. food and beverages, shoes, fashion items, telecom operators. Here, we present our system, its flexibility and performance. We also show benchmark results on open datasets, that significantly outperform state-of-the-art prior work.Comment: 7 pages, 8 figure

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape
    • …
    corecore