945 research outputs found

    A deductive verification platform for cryptographic software

    Get PDF
    In this paper we describe a deductive verification platform for the CAO language. CAO is a domain-specific language for cryptography. We show that this language presents interesting challenges for formal verification, not only in the rich mathematical type system that it introduces, but also in the cryptography-oriented language constructions that it offers. We describe how we tackle these problems, and also demonstrate that, by relying on the Jessie plug-in included in the Frama-C framework, the development time of such a complex verification tool could be greatly reduced. We base our presentation on real-world examples of CAO code, extracted from the open-source code of the NaCl cryptographic library, and illustrate how various cryptography-relevant security properties can be verified.(undefined

    A Deductive Verification Platform for Cryptographic Software

    Get PDF
    In this paper we describe a deductive verification platform for the CAO language. CAO is a domain-specific language for cryptography. We show that this language presents interesting challenges for formal verification, not only in the rich mathematical type system that it introduces, but also in the cryptography-oriented language constructions that it offers. We describe how we tackle these problems, and also demonstrate that, by relying on the Jessie plug-in included in the Frama-C framework, the development time of such a complex verification tool could be greatly reduced. We base our presentation on real-world examples of CAO code, extracted from the open-source code of the NaCl cryptographic library, and illustrate how various cryptography-relevant security properties can be verified

    Deductive Verification of Cryptographic Software

    Get PDF
    We report on the application of an off-the-shelf verification platform to the RC4 stream cipher cryptographic software implementation (as available in the openSSL library), and introduce a deductive verification technique based on self-composition for proving the absence of error propagation

    RPP: Automatic Proof of Relational Properties by Self-Composition

    Full text link
    Self-composition provides a powerful theoretical approach to prove relational properties, i.e. properties relating several program executions, that has been applied to compare two runs of one or similar programs (in secure dataflow properties, code transformations, etc.). This tool demo paper presents RPP, an original implementation of self-composition for specification and verification of relational properties in C programs in the FRAMA-C platform. We consider a very general notion of relational properties invoking any finite number of function calls of possibly dissimilar functions with possible nested calls. The new tool allows the user to specify a relational property, to prove it in a completely automatic way using classic deductive verification, and to use it as a hypothesis in the proof of other properties that may rely on it

    Formal verification of side-channel countermeasures using self-composition

    Get PDF
    Formal verification of cryptographic software implementations poses significant challenges for off-the-shelf tools. This is due to the domain-specific characteristics of the code, involving aggressive optimizations and non-functional security requirements, namely the critical aspect of countermeasures against side-channel attacks. In this paper, we extend previous results supporting the practicality of self-composition proofs of non-interference and generalizations thereof. We tackle the formal verification of high-level security policies adopted in the implementation of the recently proposed NaCl cryptographic library. We formalize these policies and propose a formal verification approach based on self-composition, extending the range of security policies that could previously be handled using this technique. We demonstrate our results by addressing compliance with the NaCl security policies in real-world cryptographic code, highlighting the potential for automation of our techniques.This work was partially supported by project SMART, funded by ENIAC joint Undertaking (GA 120224)

    CAOVerif : an open-source deductive verification platform for cryptographic software implementations

    Get PDF
    CAO is a domain-specific imperative language for cryptography, offering a rich mathematical type system and crypto-oriented language constructions. We describe the design and implementation of a deductive verification platform for CAO and demonstrate that the development time of such a complex verification tool could be greatly reduced by building on the Jessie plug-in included in the Frama-C framework. We discuss the interesting challenges raised by the domain-specific characteristics of CAO, and describe how we tackle these problems in our design. We base our presentation on real-world examples of CAO code, extracted from the open-source code of the NaCl cryptographic library, and illustrate how various cryptography-relevant security properties can be verified.This work was supported by Project Best Case, co-financed by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Formal verification of side channel countermeasures using self-composition

    Get PDF
    Formal verification of cryptographic software implementations poses significant challenges for off-the-shelf tools. This is due to the domain-specific characteristics of the code, involving aggressive optimisations and non-functional security requirements, namely the critical aspect of countermeasures against side-channel attacks. In this paper we extend previous results supporting the practicality of self-composition proofs of non-interference and generalisations thereof. We tackle the formal verification of high-level security policies adopted in the implementation of the recently proposed NaCl cryptographic library. We formalize these policies and propose a formal verification approach based on self-composition, extending the range of security policies that could previously be handled using this technique. We demonstrate our results by addressing compliance with the NaCl security policies in real-world cryptographic code, highlighting the potential for automation of our techniques.Fundação para a Ciência e a Tecnologia (FCT

    Verifying cryptographic software correctness with respect to reference implementations

    Get PDF
    This paper presents techniques developed to check program equivalences in the context of cryptographic software development, where specifications are typically reference implementations. The techniques allow for the integration of interactive proof techniques (required given the difficulty and generality of the results sought) in a verification infrastructure that is capable of discharging many verification conditions automatically. To this end, the difficult results in the verification process (to be proved interactively) are isolated as a set of lemmas. The fundamental notion of natural invariant is used to link the specification level and the interactive proof construction process.Fundação para a Ciência e a Tecnologia (FCT

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework
    corecore