7,639 research outputs found

    Design Environments for Complex Systems

    Get PDF
    The paper describes an approach for modeling complex systems by hiding as much formal details as possible from the user, still allowing verification and simulation of the model. The interface is based on UML to make the environment available to the largest audience. To carry out analysis, verification and simulation we automatically extract process algebras specifications from UML models. The results of the analysis is then reflected back in the UML model by annotating diagrams. The formal model includes stochastic information to handle quantitative parameters. We present here the stochastic -calculus and we discuss the implementation of its probabilistic support that allows simulation of processes. We exploit the benefits of our approach in two applicative domains: global computing and systems biology

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Using conceptual graphs for clinical guidelines representation and knowledge visualization

    Get PDF
    The intrinsic complexity of the medical domain requires the building of some tools to assist the clinician and improve the patient’s health care. Clinical practice guidelines and protocols (CGPs) are documents with the aim of guiding decisions and criteria in specific areas of healthcare and they have been represented using several languages, but these are difficult to understand without a formal background. This paper uses conceptual graph formalism to represent CGPs. The originality here is the use of a graph-based approach in which reasoning is based on graph-theory operations to support sound logical reasoning in a visual manner. It allows users to have a maximal understanding and control over each step of the knowledge reasoning process in the CGPs exploitation. The application example concentrates on a protocol for the management of adult patients with hyperosmolar hyperglycemic state in the Intensive Care Unit

    Formal Models and Techniques for Analyzing Security Protocols: A Tutorial

    Get PDF
    International audienceSecurity protocols are distributed programs that aim at securing communications by the means of cryptography. They are for instance used to secure electronic payments, home banking and more recently electronic elections. Given The financial and societal impact in case of failure, and the long history of design flaws in such protocol, formal verification is a necessity. A major difference from other safety critical systems is that the properties of security protocols must hold in the presence of an arbitrary adversary. The aim of this paper is to provide a tutorial to some modern approaches for formally modeling protocols, their goals and automatically verifying them

    Verifying the Interplay of Authorization Policies and Workflow in Service-Oriented Architectures (Full version)

    Full text link
    A widespread design approach in distributed applications based on the service-oriented paradigm, such as web-services, consists of clearly separating the enforcement of authorization policies and the workflow of the applications, so that the interplay between the policy level and the workflow level is abstracted away. While such an approach is attractive because it is quite simple and permits one to reason about crucial properties of the policies under consideration, it does not provide the right level of abstraction to specify and reason about the way the workflow may interfere with the policies, and vice versa. For example, the creation of a certificate as a side effect of a workflow operation may enable a policy rule to fire and grant access to a certain resource; without executing the operation, the policy rule should remain inactive. Similarly, policy queries may be used as guards for workflow transitions. In this paper, we present a two-level formal verification framework to overcome these problems and formally reason about the interplay of authorization policies and workflow in service-oriented architectures. This allows us to define and investigate some verification problems for SO applications and give sufficient conditions for their decidability.Comment: 16 pages, 4 figures, full version of paper at Symposium on Secure Computing (SecureCom09

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Satisfiability of General Intruder Constraints with and without a Set Constructor

    Get PDF
    Many decision problems on security protocols can be reduced to solving so-called intruder constraints in Dolev Yao model. Most constraint solving procedures for protocol security rely on two properties of constraint systems called monotonicity and variable origination. In this work we relax these restrictions by giving a decision procedure for solving general intruder constraints (that do not have these properties) that stays in NP. Our result extends a first work by L. Mazar\'e in several directions: we allow non-atomic keys, and an associative, commutative and idempotent symbol (for modeling sets). We also discuss several new applications of the results.Comment: Submitted to the Special issue of Information and Computation on Security and Rewriting Techniques (SecReT), 2011. 59 page
    • …
    corecore