783 research outputs found

    Energy storage systems and power conversion electronics for e-transportation and smart grid

    Get PDF
    The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Forward uncertainty quantification with special emphasis on a Bayesian active learning perspective

    Get PDF
    Uncertainty quantification (UQ) in its broadest sense aims at quantitatively studying all sources of uncertainty arising from both computational and real-world applications. Although many subtopics appear in the UQ field, there are typically two major types of UQ problems: forward and inverse uncertainty propagation. The present study focuses on the former, which involves assessing the effects of the input uncertainty in various forms on the output response of a computational model. In total, this thesis reports nine main developments in the context of forward uncertainty propagation, with special emphasis on a Bayesian active learning perspective. The first development is concerned with estimating the extreme value distribution and small first-passage probabilities of uncertain nonlinear structures under stochastic seismic excitations, where a moment-generating function-based mixture distribution approach (MGF-MD) is proposed. As the second development, a triple-engine parallel Bayesian global optimization (T-PBGO) method is presented for interval uncertainty propagation. The third contribution develops a parallel Bayesian quadrature optimization (PBQO) method for estimating the response expectation function, its variable importance and bounds when a computational model is subject to hybrid uncertainties in the form of random variables, parametric probability boxes (p-boxes) and interval models. In the fourth research, of interest is the failure probability function when the inputs of a performance function are characterized by parametric p-boxes. To do so, an active learning augmented probabilistic integration (ALAPI) method is proposed based on offering a partially Bayesian active learning perspective on failure probability estimation, as well as the use of high-dimensional model representation (HDMR) technique. Note that in this work we derive an upper-bound of the posterior variance of the failure probability, which bounds our epistemic uncertainty about the failure probability due to a kind of numerical uncertainty, i.e., discretization error. The fifth contribution further strengthens the previously developed active learning probabilistic integration (ALPI) method in two ways, i.e., enabling the use of parallel computing and enhancing the capability of assessing small failure probabilities. The resulting method is called parallel adaptive Bayesian quadrature (PABQ). The sixth research presents a principled Bayesian failure probability inference (BFPI) framework, where the posterior variance of the failure probability is derived (not in closed form). Besides, we also develop a parallel adaptive-Bayesian failure probability learning (PA-BFPI) method upon the BFPI framework. For the seventh development, we propose a partially Bayesian active learning line sampling (PBAL-LS) method for assessing extremely small failure probabilities, where a partially Bayesian active learning insight is offered for the classical LS method and an upper-bound for the posterior variance of the failure probability is deduced. Following the PBAL-LS method, the eighth contribution finally obtains the expression of the posterior variance of the failure probability in the LS framework, and a Bayesian active learning line sampling (BALLS) method is put forward. The ninth contribution provides another Bayesian active learning alternative, Bayesian active learning line sampling with log-normal process (BAL-LS-LP), to the traditional LS. In this method, the log-normal process prior, instead of a Gaussian process prior, is assumed for the beta function so as to account for the non-negativity constraint. Besides, the approximation error resulting from the root-finding procedure is also taken into consideration. In conclusion, this thesis presents a set of novel computational methods for forward UQ, especially from a Bayesian active learning perspective. The developed methods are expected to enrich our toolbox for forward UQ analysis, and the insights gained can stimulate further studies

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Methods of system identification, parameter estimation and optimisation applied to problems of modelling and control in engineering and physiology

    Get PDF
    Mathematical and computer-based models provide the foundation of most methods of engineering design. They are recognised as being especially important in the development of integrated dynamic systems, such as “control-configured” aircraft or in complex robotics applications. These models usually involve combinations of linear or nonlinear ordinary differential equations or difference equations, partial differential equations and algebraic equations. In some cases models may be based on differential algebraic equations. Dynamic models are also important in many other fields of research, including physiology where the highly integrated nature of biological control systems is starting to be more fully understood. Although many models may be developed using physical, chemical, or biological principles in the initial stages, the use of experimentation is important for checking the significance of underlying assumptions or simplifications and also for estimating appropriate sets of parameters. This experimental approach to modelling is also of central importance in establishing the suitability, or otherwise, of a given model for an intended application – the so-called “model validation” problem. System identification, which is the broad term used to describe the processes of experimental modelling, is generally considered to be a mature field and classical methods of identification involve linear discrete-time models within a stochastic framework. The aspects of the research described in this thesis that relate to applications of identification, parameter estimation and optimisation techniques for model development and model validation mainly involve nonlinear continuous time models Experimentally-based models of this kind have been used very successfully in the course of the research described in this thesis very in two areas of physiological research and in a number of different engineering applications. In terms of optimisation problems, the design, experimental tuning and performance evaluation of nonlinear control systems has much in common with the use of optimisation techniques within the model development process and it is therefore helpful to consider these two areas together. The work described in the thesis is strongly applications oriented. Many similarities have been found in applying modelling and control techniques to problems arising in fields that appear very different. For example, the areas of neurophysiology, respiratory gas exchange processes, electro-optic sensor systems, helicopter flight-control, hydro-electric power generation and surface ship or underwater vehicles appear to have little in common. However, closer examination shows that they have many similarities in terms of the types of problem that are presented, both in modelling and in system design. In addition to nonlinear behaviour; most models of these systems involve significant uncertainties or require important simplifications if the model is to be used in a real-time application such as automatic control. One recurring theme, that is important both in the modelling work described and for control applications, is the additional insight that can be gained through the dual use of time-domain and frequency-domain information. One example of this is the importance of coherence information in establishing the existence of linear or nonlinear relationships between variables and this has proved to be valuable in the experimental investigation of neuromuscular systems and in the identification of helicopter models from flight test data. Frequency-domain techniques have also proved useful for the reduction of high-order multi-input multi-output models. Another important theme that has appeared both within the modelling applications and in research on nonlinear control system design methods, relates to the problems of optimisation in cases where the associated response surface has many local optima. Finding the global optimum in practical applications presents major difficulties and much emphasis has been placed on evolutionary methods of optimisation (both genetic algorithms and genetic programming) in providing usable methods for optimisation in design and in complex nonlinear modelling applications that do not involve real-time problems. Another topic, considered both in the context of system modelling and control, is parameter sensitivity analysis and it has been found that insight gained from sensitivity information can be of value not only in the development of system models (e.g. through investigation of model robustness and the design of appropriate test inputs), but also in feedback system design and in controller tuning. A technique has been developed based on sensitivity analysis for the semi-automatic tuning of cascade and feedback controllers for multi-input multi-output feedback control systems. This tuning technique has been applied successfully to several problems. Inverse systems also receive significant attention in the thesis. These systems have provided a basis for theoretical research in the control systems field over the past two decades and some significant applications have been reported, despite the inherent difficulties in the mathematical methods needed for the nonlinear case. Inverse simulation methods, developed initially by others for use in handling-qualities studies for fixed-wing aircraft and helicopters, are shown in the thesis to provide some important potential benefits in control applications compared with classical methods of inversion. New developments in terms of methodology are presented in terms of a novel sensitivity based approach to inverse simulation that has advantages in terms of numerical accuracy and a new search-based optimisation technique based on the Nelder-Mead algorithm that can handle inverse simulation problems involving hard nonlinearities. Engineering applications of inverse simulation are presented, some of which involve helicopter flight control applications while others are concerned with feed-forward controllers for ship steering systems. The methods of search-based optimisation show some important advantages over conventional gradient-based methods, especially in cases where saturation and other nonlinearities are significant. The final discussion section takes the form of a critical evaluation of results obtained using the chosen methods of system identification, parameter estimation and optimisation for the modelling and control applications considered. Areas of success are highlighted and situations are identified where currently available techniques have important limitations. The benefits of an inter-disciplinary and applications-oriented approach to problems of modelling and control are also discussed and the value in terms of cross-fertilisation of ideas resulting from involvement in a wide range of applications is emphasised. Areas for further research are discussed

    Analysis of effective mechanical properties of thin films used in microelectromechanical systems

    Get PDF
    This research aims at analyzing the effective mechanical properties of thin film materials that are used in MEMS. Using the effective mechanical properties, reliable simulations of new or slightly altered designs can be performed successfully. The main reason for investigating effective material properties of MEMS devices is that the existing techniques can not provide consistent prediction of the mechanical properties without time-consuming and costly physical prototyping if the device or the fabrication recipe is slightly altered. To achieve this goal, two approaches were investigated: soft computing and analytical. In the soft computing approach, the effective material properties are empirically modeled and estimated based on experimental data and the relationships between the parameters affecting the mechanical properties of devices are discovered. In this approach, 2D-search, Micro Genetic Algorithms, Neural networks, and Radial Basis Functions Networks were explored for the search of the effective material properties of the thin films with the help of a Finite Element Analysis (FEA) and modeling the mechanical behavior such that the effective material properties can be estimated for a new device. In the analytical approach, the physical behavior of the thin films is modeled analytically using standard elastic theories such as Stoney’s formulae. As a case study, bilayer cantilevers of various dimensions were fabricated for extracting the effective Young’s modulus of thin film materials: Aluminum, TetraEthylOrthoSilicate (TEOS)-based SiO2, and Polyimide. In addition, a Matlab® graphical user interface (GUI), STEAM, is developed which interfaces with Ansys®. In STEAM, a fuzzy confidence factor is also developed to validate the reliability of the estimates based on factors such as facility and recipe-dependent variables. The results obtained from both approaches generated comparable effective material properties which are in accord with the experimental measurements. The results show that effective material properties of thin films can be estimated so that reliable MEMS devices can be designed without timely and costly physical prototyping
    • …
    corecore