5,174 research outputs found

    A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D

    Solving Many-Objective Car Sequencing Problems on Two-Sided Assembly Lines Using an Adaptive Differential Evolutionary Algorithm

    Get PDF
    The car sequencing problem (CSP) is addressed in this paper. The original environment of the CSP is modified to reflect real practices in the automotive industry by replacing the use of single-sided straight assembly lines with two-sided assembly lines. As a result, the problem becomes more complex caused by many additional constraints to be considered. Six objectives (i.e. many objectives) are optimised simultaneously including minimising the number of colour changes, minimising utility work, minimising total idle time, minimising the total number of ratio constraint violations and minimising total production rate variation. The algorithm namely adaptive multi-objective evolutionary algorithm based on decomposition hybridised with differential evolution algorithm (AMOEA/D-DE) is developed to tackle this problem. The performances in Pareto sense of AMOEA/D-DE are compared with COIN-E, MODE, MODE/D and MOEA/D. The results indicate that AMOEA/D-DE outperforms the others in terms of convergence-related metrics

    A dynamic multi-objective evolutionary algorithm based on polynomial regression and adaptive clustering

    Get PDF
    In this paper, a dynamic multi-objective evolutionary algorithm is proposed based on polynomial regression and adaptive clustering, called DMOEA-PRAC. As the Pareto-optimal solutions and fronts of dynamic multi-objective optimization problems (DMOPs) may dynamically change in the optimization process, two corresponding change response strategies are presented for the decision space and objective space, respectively. In the decision space, the potentially useful information contained in all historical populations is obtained by the proposed predictor based on polynomial regression, which extracts the linear or nonlinear relationship in the historical change. This predictor can generate good initial population for the new environment. In the objective space, in order to quickly adapt to the new environment, an adaptive reference vector regulator is designed in this paper based on K-means clustering for the complex changes of Pareto-optimal fronts, in which the adjusted reference vectors can effectively guide the evolution. Finally, DMOEA-PRAC is compared with some recently proposed dynamic multi-objective evolutionary algorithms and the experimental results verify the effectiveness of DMOEA-PRAC in dealing with a variety of DMOPs
    • …
    corecore