340 research outputs found

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    A combined Mixed Integer Programming model of seaside operations arising in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely the Berth Allocation Problem, the Quay Crane Assignment Problem, and the Quay Crane Scheduling problem, which have to be solved to carry out these seaside operations in container ports. Each one of these problems is complex to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence the need to solve them in a combined form. The problem is formulated as a mixed-integer programming model with the objective being to minimise the tardiness of vessels. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    The matching relaxation for a class of generalized set partitioning problems

    Full text link
    This paper introduces a discrete relaxation for the class of combinatorial optimization problems which can be described by a set partitioning formulation under packing constraints. We present two combinatorial relaxations based on computing maximum weighted matchings in suitable graphs. Besides providing dual bounds, the relaxations are also used on a variable reduction technique and a matheuristic. We show how that general method can be tailored to sample applications, and also perform a successful computational evaluation with benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial Optimization), with proceedings on Electronic Notes in Discrete Mathematic

    A reclaimer scheduling problem arising in coal stockyard management

    Full text link
    We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.Comment: 26 page

    An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely berth allocation, quay crane assignment, and quay crane scheduling that arise in container ports. Each one of these problems is difficult to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence, it is desirable to solve them in a combined form. The model is of the mixed-integer programming type with the objective being to minimize the tardiness of vessels and reduce the cost of berthing. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX. Large scale instances, however, can only be solved in reasonable times using heuristics. Here, an implementation of the genetic algorithm is considered. The effectiveness of this implementation is tested against CPLEX on small to medium size instances of the combined model. Larger size instances were also solved with the genetic algorithm, showing that this approach is capable of finding the optimal or near optimal solutions in realistic times

    Berth Allocation Problem with Quay Crane Assignment for Container Terminals Based on Rolling-Horizon Strategy

    Get PDF
    In order to solve the large-scale integral dynamic scheduling of continuous berths and quay cranes problem, a method based on rolling-horizon strategy is proposed. A multiobjective optimization model that is established minimizes the total penalty costs considering vessels’ deviations to their preferred berthing positions, delayed times for berthing comparing to their estimated arrival times, and delayed times for departure comparing to their estimated departure times. Then, the scheduling process was divided into a set of continual scheduling interval according to the dynamic arrival sequences. Meanwhile, rolling-horizon strategies for setting rolling and frozen windows and the parameter updating strategy are designed. The input parameters of the model in the next rolling window are updated according to the optimal results of each time window which have been obtained. The model is solved by choosing appropriate rolling and freezing window lengths that represents the numbers of adjacent vessels in the sequence of calling vessels. The holistic optimal solution is obtained by gradually rolling and combining the results of each window. Finally, a case study indicated that the rolling schedule can solve large-scale scheduling problems, and the efficiency of the proposed approach relates to the size of rolling window, freeze ship quantity, and rolling frequency

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work
    • …
    corecore