1,962 research outputs found

    Decomposable Principal Component Analysis

    Full text link
    We consider principal component analysis (PCA) in decomposable Gaussian graphical models. We exploit the prior information in these models in order to distribute its computation. For this purpose, we reformulate the problem in the sparse inverse covariance (concentration) domain and solve the global eigenvalue problem using a sequence of local eigenvalue problems in each of the cliques of the decomposable graph. We demonstrate the application of our methodology in the context of decentralized anomaly detection in the Abilene backbone network. Based on the topology of the network, we propose an approximate statistical graphical model and distribute the computation of PCA

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Parameterized Complexity of Critical Node Cuts

    Get PDF
    We consider the following natural graph cut problem called Critical Node Cut (CNC): Given a graph GG on nn vertices, and two positive integers kk and xx, determine whether GG has a set of kk vertices whose removal leaves GG with at most xx connected pairs of vertices. We analyze this problem in the framework of parameterized complexity. That is, we are interested in whether or not this problem is solvable in f(κ)⋅nO(1)f(\kappa) \cdot n^{O(1)} time (i.e., whether or not it is fixed-parameter tractable), for various natural parameters κ\kappa. We consider four such parameters: - The size kk of the required cut. - The upper bound xx on the number of remaining connected pairs. - The lower bound yy on the number of connected pairs to be removed. - The treewidth ww of GG. We determine whether or not CNC is fixed-parameter tractable for each of these parameters. We determine this also for all possible aggregations of these four parameters, apart from w+kw+k. Moreover, we also determine whether or not CNC admits a polynomial kernel for all these parameterizations. That is, whether or not there is an algorithm that reduces each instance of CNC in polynomial time to an equivalent instance of size κO(1)\kappa^{O(1)}, where κ\kappa is the given parameter
    • …
    corecore