345 research outputs found

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores

    Advanced light management concepts for perovskite photovoltaics

    Get PDF
    Um die rasante Zunahme der Treibhausgasemission zu bremsen und damit die globale Erderwärmung, ist ein schneller Umstieg von fossilen Brennstoffen auf erneuerbare Energien unabdingbar. In dieser Hinsicht spielt die Photovoltaik (PV) eine entscheidende Rolle, um eine effiziente Dekarbonisierung der globalen Stromerzeugung voranzutreiben. Dafür wird gegenwärtig sowohl an bestehender Silizium-PV, als auch an neuen PV-Technologien geforscht. Der prominenteste Kandidat unter den neuen Technologien sind die Perowskit-Solarzellen. Diese haben in den letzten 10 Jahren eine beispiellose Effizienzsteigerung durchlaufen und erzielen heute Rekordwirkungsgrade über 25%. Die rasche Entwicklung der Perowskit-basierten PV ist vor allem durch das Versprechen einer kostengünstigen, effizienten und skalierbaren Technologie motiviert. Sie gilt zum einen als Konkurrenz zur bestehenden Silizium-PV und zum anderen als Partner für die Anwendung in Perowskit/Silizium Tandem-PV. In dieser Hinsicht bietet die Perowskit-basierte Tandem-PV die Aussicht, den derzeitigen Rekordwirkungsgrad von Silizium (c-Si) Solarzellen (≈27%) und sogar die Shockley-Queisser-Grenze für Einfachsolarzellen (≈34%) zu übertreffen. Eine verbleibende Herausforderung, sowie ein aktuell stark untersuchtes Forschungsthema von Perowskit/c-Si-Tandemsolarzellen, ist ihre geringere Lichtausbeute im Vergleich zu konventionellen c-Si Solarzellen. Dies ist insbesondere auf zusätzlich erforderliche Funktionsschichten, wie die transparenten Elektroden, Ladungstransportschichten und Passivierungsschichten zurückzuführen, die gemeinsam zu Reflexionsverlusten und Verlusten durch parasitäre Absorption beitragen. Dies reduziert sowohl den Wirkungsgrad (PCE) als auch den Energieertrag (EY) der Tandem-Solarzelle. Um Reflexions- und Absorptionsverluste zu minimieren, ist ein fortschrittliches Lichtmanagement unerlässlich. Da sich die realistischen Einstrahlungsbedingungen stark von typischen Standardtestbedingungen unterscheiden (z.B. spektrale Variation und variabler Einfallswinkel des Sonnenlichts), ist es zwingend notwendig, PV-Module nicht nur für den PCE, sondern auch für den EY zu optimieren. Daher ist ein ausgeklügeltes Lichtmanagement nicht nur auf Tandem-Solarmodule beschränkt, sondern für jede Art von Solarmodul wichtig. In dieser Arbeit werden verschiedene Lichtmanagementkonzepte für die Perowskit-basierte-PV diskutiert und in Bezug auf den PCE und den jährlichen EY bewertet. In diesem Zusammenhang werden Mikrotexturen für eine verbesserte Lichteinkopplung an der Luft/Glas-Grenzfläche untersucht, was für alle PV-Technologien relevant ist. Die Mikrotexturen an der Vorderseite des Solarmoduls bieten die Möglichkeit, die Luft/Glas-Reflexion fast vollständig zu eliminieren und bei schrägen Einfallswinkeln (z.B. 80°) um ca. 80%rel zu reduzieren. Die experimentelle Realisierung zeigt die Erhöhung des PCE um 12%rel bzw. 5%rel für planare und texturierte Siliziumsolarzellen. Darüber hinaus werden Mikrotexturen auf Perowskit/c-Si-Tandem-Minimodulen realisiert, die den PCE um 10%rel verbessern. Aufgrund der ausgezeichneten Winkelstabilität der Mikrotexturen spiegelt sich die Verbesserung des PCE auch im EY wider, was durch Simulationen gezeigt wird, bei denen die Verbesserungen im EY die des PCE um 2%rel übertreffen. Zusätzlich zur ersten Grenzfläche jedes Solarmoduls werden die Reflexionsverluste an den vorderen halbtransparenten Indiumzinnoxid (ITO) Elektroden der Perowskit-Solarzellen untersucht. Mit Hilfe von nanotexturierten Glas/ITO-Grenzflächen können diese Verluste minimiert werden, was zu einem verbesserten Strom in der oberen Perowskit- und unteren c-Si-Solarzelle führt. Dies verbessert den Tandem-PCE um 2%rel. Darüber hinaus sind die nanotexturierten Elektroden winkelstabil und versprechen in den Simulationen eine Erhöhung des EY um 10%rel, was höher ist als die simulierte Verbesserung des PCE um 9%rel. Weitere nanophotonische Modifikationen der Absorberschicht der Perowskit-Solarzelle führen zu einer verbesserten Absorption in der Nähe der Bandlücke, indem das einfallende Licht in quasi-geführte Moden eingekoppelt wird. Simulationen zeigen, dass dies die Stromerzeugung in den Perowskit-Solarzellen um bis zu 6%rel verbessert. Erste experimentelle Ergebnisse demonstrieren eine Verbesserung um 2%rel. Darüber hinaus bieten die nanophotonischen Perowskit-Solarzellen eine einfache Möglichkeit, den um-weltschädlichen Bleigehalt in den Perowskit-Solarzellen bei gleichbleibendem Wirkungsgrad, um 30%rel zu verringern. Darüber hinaus verändert die nanophotonische Modifikation des Absorbers die Winkelabhängigkeit der Perowskit-Solarzellen nicht und führt zu den äquivalenten Verbesserungen des EY. Schließlich wird ein neuartiges Herstellungsverfahren für Perowskit-Solarzellen vorgestellt, dass eine einfache Laminierung der Perowskit-Solarzellen ermöglicht. Damit umgeht die Laminierung Inkompatibilitäten bei konventionellen Schichtabscheidungs-techniken und bietet somit mehr Flexibilität und Freiheit bei der Wahl der Ladungstransportmaterialien für die Perowskit-Solarzellenherstellung. Erste Prototypen zeigen eine ausgezeichnete Langzeit- und Temperaturstabilität der laminierten Perowskit-Solarzellen mit einem PCE über 14%. Das vorgestellte Laminierungskonzept bahnt damit den Weg für eine direkte Laminierung von Perowskit-Solarzellen auf die bestehende Siliziumtechnologie und hat so ein großes Potential für die aktuelle Perowskit-basierte Tandemforschung

    Fabricating and Characterizing Chalcogenide Thin Films as Light Absorbing Layers in Solar Cells

    Get PDF
    Solar cell development has been a focus in energy research, with light-absorbing layers as the key theme. Copper indium disulphide (CuInS2) and copper zinc tin sulphide (Cu2ZnSnS4 or CZTS) have energy band gaps that are optimal for solar energy conversion. New preparation methods have been developed with practicality, safety, and low costs in mind. The one-pot method developed in this thesis group has been utilized to create nanocrystals that can be used to absorb light and generate current. The use of low temperatures and minimalistic reaction conditions has led to the production of CIS and CZTS nanocrystals that can be made into thin films. In this work, many analytical methods were used to investigate the physical and chemical nature of the synthesized CIS and CZTS nanocrystals to ensure purity and photoactivity. A layer-by-layer approach was used to confirm the optimal configuration for a solar cell physically and chemically. The quality of CIS and CZTS films were assessed by factors such as the production of photocurrent, the band gap, and interfacial chemical reactions. The solar cell layers were examined using a variety of physical, electrochemical and analytical methods in order to determine the effects of the synthesis and deposition on established properties. The electrochemistry of the interface was examined using photoelectrochemical measurements and intensity modulated photocurrent spectroscopy was also performed at the interface to identify relative reaction rates of the photoprocesses. X-ray absorption near-edge, X-ray photoelectron, X-ray diffraction and Raman spectroscopies examined the physical aspects of the films. Insight into the transfer of photogenerated electrons and effects of surface morphology can be elucidated through the combination of these techniques. A systematic approach towards the development of these nanocrystal-based solar cells consisting of CIS or CZTS has shown great progress towards creating low-cost photovoltaics

    Dynamic Core Community Detection and Information Diffusion Processes on Networks

    Full text link
    Interest in network science has been increasingly shared among various research communities due to its broad range of applications. Many real world systems can be abstracted as networks, a group of nodes connected by pairwise edges, and examples include friendship networks, metabolic networks, and world wide web among others. Two of the main research areas in network science that have received a lot of focus are community detection and information diffusion. As for community detection, many well developed algorithms are available for such purposes in static networks, for example, spectral partitioning and modularity function based optimization algorithms. As real world data becomes richer, community detection in temporal networks becomes more and more desirable and algorithms such as tensor decomposition and generalized modularity function optimization are developed. One scenario not well investigated is when the core community structure persists over long periods of time with possible noisy perturbations and changes only over periods of small time intervals. The contribution of this thesis in this area is to propose a new algorithm based on low rank component recovery of adjacency matrices so as to identify the phase transition time points and improve the accuracy of core community structure recovery. As for information diffusion, traditionally it was studied using either threshold models or independent interaction models as an epidemic process. But information diffusion mechanism is different from epidemic process such as disease transmission because of the reluctance to tell stale news and to address this issue other models such as DK model was proposed taking into consideration of the reluctance of spreaders to diffuse the information as time goes by. However, this does not capture some cases such as the losing interest of information receivers as in viral marketing. The contribution of this thesis in this area is we proposed two new models coined susceptible-informed-immunized (SIM) model and exponentially time decaying susceptible-informed (SIT) model to successfully capture the intrinsic time value of information from both the spreader and receiver points of view. Rigorous analysis of the dynamics of the two models were performed based mainly on mean field theory. The third contribution of this thesis is on the information diffusion optimization. Controlling information diffusion has been widely studied because of its important applications in areas such as social census, disease control and marketing. Traditionally the problem is formulated as identifying the set of k seed nodes, informed initially, so as to maximize the diffusion size. Heuristic algorithms have been developed to find approximate solutions for this NP-hard problem, and measures such as k-shell, node degree and centrality have been used to facilitate the searching for optimal solutions. The contribution of this thesis in this field is to design a more realistic objective function and apply binary particle swarm optimization algorithm for this combinatorial optimization problem. Instead of fixating the seed nodes size and maximize the diffusion size, we maximize the profit defined as the revenue, which is simply the diffusion size, minus the cost of setting those seed nodes, which is designed as a function of degrees of the seed nodes or a measure that is similar to the centrality of nodes. Because of the powerful algorithm, we were able to study complex scenarios such as information diffusion optimization on multilayer networks.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145937/1/wbao_1.pd
    corecore