45 research outputs found

    The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances

    Get PDF
    Time Series Classification (TSC) involves building predictive models for a discrete target variable from ordered, real valued, attributes. Over recent years, a new set of TSC algorithms have been developed which have made significant improvement over the previous state of the art. The main focus has been on univariate TSC, i.e. the problem where each case has a single series and a class label. In reality, it is more common to encounter multivariate TSC (MTSC) problems where the time series for a single case has multiple dimensions. Despite this, much less consideration has been given to MTSC than the univariate case. The UCR archive has provided a valuable resource for univariate TSC, and the lack of a standard set of test problems may explain why there has been less focus on MTSC. The UEA archive of 30 MTSC problems released in 2018 has made comparison of algorithms easier. We review recently proposed bespoke MTSC algorithms based on deep learning, shapelets and bag of words approaches. If an algorithm cannot naturally handle multivariate data, the simplest approach to adapt a univariate classifier to MTSC is to ensemble it over the multivariate dimensions. We compare the bespoke algorithms to these dimension independent approaches on the 26 of the 30 MTSC archive problems where the data are all of equal length. We demonstrate that four classifiers are significantly more accurate than the benchmark dynamic time warping algorithm and that one of these recently proposed classifiers, ROCKET, achieves significant improvement on the archive datasets in at least an order of magnitude less time than the other three

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Motor Learning in Virtual Reality: From Motion to Augmented Feedback

    Get PDF
    Hülsmann F. Motor Learning in Virtual Reality: From Motion to Augmented Feedback. Bielefeld: Universität Bielefeld; 2019.Sports and fitness exercises are an important factor in health improvement. The acquisition of new movements - motor learning - and the improvement of techniques for already learned ones are a vital part of sports training. Ideally, this part is supervised and supported by coaches. They know how to correctly perform specific exercises and how to prevent typical movement errors. However, coaches are not always available or do not have enough time to fully supervise training sessions. Virtual reality (VR) is an ideal medium to support motor learning in the absence of coaches. VR systems could supervise performed movements, visualize movement patterns, and identify errors that are performed by a trainee. Further, feedback could be provided that even extends the possibilities of coaching in the real world. Still, core concepts that form the basis of effective coaching applications in VR are not yet fully developed. In order to diminish this gap, we focus on the processing of kinematic data as one of the core components for motor learning. Based on the processing of kinematic data in real-time, a coaching system can supervise a trainee and provide varieties of multi-modal feedback strategies. For motor learning, this thesis explores the development of core concepts based on the usage of kinematic data in three areas. First, the movement that is performed by a trainee must be observed and visualized in real-time. The observation can be achieved by state-of-the-art motion capture techniques. Concerning the visualization, in the real world, trainees can observe their own performance in mirrors. We use a virtual mirror as a paradigm to allow trainees to observe their own movement in a natural way. A well established feedback strategy from real-world coaching, namely improvement via observation of a target performance, is transfered into the virtual mirror paradigm. Second, a system that focuses on motor learning should be able to assess the performance that it observes. For instance, typical errors in a trainee's performance must be detected as soon as possible in order to react in an effective way. Third, the motor learning environment should be able to provide suitable feedback strategies based on detected errors. In this thesis, real-time feedback based on error detection is integrated inside a coaching cycle that is inspired from real-world coaching. In a final evaluation, all the concepts are brought together in a VR coaching system. We demonstrate that this system is able to help trainees in improving their motor performance with respect to specific error patterns. Finally, based on the results throughout the thesis, helpful guidelines in order to develop effective environments for motor learning in VR are proposed

    Behaviour Profiling using Wearable Sensors for Pervasive Healthcare

    Get PDF
    In recent years, sensor technology has advanced in terms of hardware sophistication and miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into networks centred on human participants, called Body Sensor Networks. Amongst the most important applications of these networks is their use in healthcare and healthy living. The technology has the possibility of decreasing burden on the healthcare systems by providing care at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, machine learning and data mining techniques are developed to estimate medically relevant parameters from a participant‘s activity and behaviour parameters, derived from simple, body-worn sensors. The first abstraction from raw sensor data is the recognition and analysis of activity. Machine learning analysis is applied to a study of activity profiling to detect impaired limb and torso mobility. One of the advances in this thesis to activity recognition research is in the application of machine learning to the analysis of 'transitional activities': transient activity that occurs as people change their activity. A framework is proposed for the detection and analysis of transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms to a study of participants undergoing and recovering from surgery. We demonstrate that it is possible to see meaningful changes in the transitional activity as the participants recover. Assuming long-term monitoring, we expect a large historical database of activity to quickly accumulate. We develop algorithms to mine temporal associations to activity patterns. This gives an outline of the user‘s routine. Methods for visual and quantitative analysis of routine using this summary data structure are proposed and validated. The activity and routine mining methodologies developed for specialised sensors are adapted to a smartphone application, enabling large-scale use. Validation of the algorithms is performed using datasets collected in laboratory settings, and free living scenarios. Finally, future research directions and potential improvements to the techniques developed in this thesis are outlined

    Efficient Nearest Neighbor Search on Metric Time Series

    Get PDF
    While Deep-Learning approaches beat Nearest-Neighbor classifiers in an increasing number of areas, searching existing uncertain data remains an exclusive task for similarity search. Numerous specific solutions exist for different types of data and queries. This thesis aims at finding fast and general solutions for searching and indexing arbitrarily typed time series. A time series is considered a sequence of elements where the elements' order matters but not their actual time stamps. Since this thesis focuses on measuring distances between time series, the metric space is the most appropriate concept where the time series' elements come from. Hence, this thesis mainly considers metric time series as data type. Simple examples include time series in Euclidean vector spaces or graphs. For general similarity search solutions in time series, two primitive comparison semantics need to be distinguished, the first of which compares the time series' trajectories ignoring time warping. A ubiquitous example of such a distance function is the Dynamic Time Warping distance (DTW) developed in the area of speech recognition. The Dog Keeper distance (DK) is another time-warping distance that, opposed to DTW, is truly invariant under time warping and yields a metric space. After canonically extending DTW to accept multi-dimensional time series, this thesis contributes a new algorithm computing DK that outperforms DTW on time series in high-dimensional vector spaces by more than one order of magnitude. An analytical study of both distance functions reveals the reasons for the superiority of DK over DTW in high-dimensional spaces. The second comparison semantic compares time series in Euclidean vector spaces regardless of their position or orientation. This thesis proposes the Congruence distance that is the Euclidean distance minimized under all isometric transformations; thus, it is invariant under translation, rotation, and reflection of the time series and therefore disregards the position or orientation of the time series. A proof contributed in this thesis shows that there can be no efficient algorithm computing this distance function (unless P=NP). Therefore, this thesis contributes the Delta distance, a metric distance function serving as a lower bound for the Congruence distance. While the Delta distance has quadratic time complexity, the provided evaluation shows a speedup of more than two orders of magnitude against the Congruence distance. Furthermore, the Delta distance is shown to be tight on random time series, although the tightness can be arbitrarily bad in corner-case situations. Orthogonally to the previous mentioned comparison semantics, similarity search on time series consists of two different types of queries: whole sequence matching and subsequence search. Metric index structures (e. g., the M-Tree) only provide whole matching queries natively. This thesis contributes the concept of metric subset spaces and the SuperM-Tree for indexing metric subset spaces as a generic solution for subsequence search. Examples for metric subset spaces include subsequence search regarding the distance functions from the comparison semantics mentioned above. The provided evaluation shows that the SuperM-Tree outperforms a linear search by multiple orders of magnitude

    State discovery for autonomous learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 163-171).This thesis is devoted to the study of algorithms for early perceptual learning for an autonomous agent in the presence of feedback. In the framework of associative perceptual learning with indirect supervision, three learning techniques are examined in detail: * short-term on-line memory-based model learning; * long-term on-line distribution-based statistical estimation; * mixed on- and off-line continuous learning of gesture models. The three methods proceed within essentially the same framework, consisting of a perceptual sub-system and a sub-system that implements the associative mapping from perceptual categories to actions. The thesis contributes in several areas - it formulates the framework for solving incremental associative learning tasks; introduces the idea of incremental classification with utility, margin and boundary compression rules; develops a technique of sequence classification with Support Vector Machines; introduces an idea of weak transduction and offers an EM-based algorithm for solving it; proposes a mixed on- and off-line algorithm for learning continuous gesture with reward-based decomposition of the state space. The proposed framework facilitates the development of agents and human-computer interfaces that can be trained by a naive user. The work presented in this dissertation focuses on making these incremental learning algorithms practical.by Yuri A. Ivanov.Ph.D

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Toward Effective Physical Human-Robot Interaction

    Get PDF
    With the fast advancement of technology, in recent years, robotics technology has significantly matured and produced robots that are able to operate in unstructured environments such as domestic environments, offices, hospitals and other human-inhabited locations. In this context, the interaction and cooperation between humans and robots has become an important and challenging aspect of robot development. Among the various kinds of possible interactions, in this Ph.D. thesis I am particularly interested in physical human-robot interaction (pHRI). In order to study how a robot can successfully engage in physical interaction with people and which factors are crucial during this kind of interaction, I investigated how humans and robots can hand over objects to each other. To study this specific interactive task I developed two robotic prototypes and conducted human-robot user studies. Although various aspects of human-robot handovers have been deeply investigated in the state of the art, during my studies I focused on three issues that have been rarely investigated so far: Human presence and motion analysis during the interaction in order to infer non-verbal communication cues and to synchronize the robot actions with the human motion; Development and evaluation of human-aware pro-active robot behaviors that enable robots to behave actively in the proximity of the human body in order to negotiate the handover location and to perform the transfer of the object; Consideration of objects grasp affordances during the handover in order to make the interaction more comfortable for the human

    Improving Wifi Sensing And Networking With Channel State Information

    Get PDF
    In recent years, WiFi has a very rapid growth due to its high throughput, high efficiency, and low costs. Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency-Division Multiplexing (OFDM) are two key technologies for providing high throughput and efficiency for WiFi systems. MIMO-OFDM provides Channel State Information (CSI) which represents the amplitude attenuation and phase shift of each transmit-receiver antenna pair of each carrier frequency. CSI helps WiFi achieve high throughput to meet the growing demands of wireless data traffic. CSI captures how wireless signals travel through the surrounding environment, so it can also be used for wireless sensing purposes. This dissertation presents how to improve WiFi sensing and networking with CSI. More specifically, this dissertation proposes deep learning models to improve the performance and capability of WiFi sensing and presents network protocols to reduce CSI feedback overhead for high efficiency WiFi networking. For WiFi sensing, there are many wireless sensing applications using CSI as the input in recent years. To get a better understanding of existing WiFi sensing technologies and future WiFi sensing trends, this dissertation presents a survey of signal processing techniques, algorithms, applications, performance results, challenges, and future trends of CSI-based WiFi sensing. CSI is widely used for gesture recognition and sign language recognition. Existing methods for WiFi-based sign language recognition have low accuracy and high costs when there are more than 200 sign gestures. The dissertation presents SignFi for sign language recognition using CSI and Convolutional Neural Networks (CNNs). SignFi provides high accuracy and low costs for run-time testing for 276 sign gestures in the lab and home environments. For WiFi networking, although CSI provides high throughput for WiFi networks, it also introduces high overhead. WiFi transmitters need CSI feedback for transmit beamforming and rate adaptation. The size of CSI packets is very large and it grows very fast with respect to the number of antennas and channel width. CSI feedback introduces high overhead which reduces the performance and efficiency of WiFi systems, especially mobile and hand-held WiFi devices. This dissertation presents RoFi to reduce CSI feedback overhead based on the mobility status of WiFi receivers. CSI feedback compression reduces overhead, but WiFi receivers still need to send CSI feedback to the WiFi transmitter. The dissertation presents EliMO for eliminating CSI feedback without sacrificing beamforming gains

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore