1,315 research outputs found

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    O'CIAO an object oriented programming model using CIAO Prolog

    Full text link
    There have been several previous proposals for the integration of Object Oriented Programming features into Logic Programming, resulting in much support theory and several language proposals. However, none of these proposals seem to have made it into the mainstream. Perhaps one of the reasons for these is that the resulting languages depart too much from the standard logic programming languages to entice the average Prolog programmer. Another reason may be that most of what can be done with object-oriented programming can already be done in Prolog through the meta- and higher-order programming facilities that the language includes, albeit sometimes in a more cumbersome way. In light of this, in this paper we propose an alternative solution which is driven by two main objectives. The first one is to include only those characteristics of object-oriented programming which are cumbersome to implement in standard Prolog systems. The second one is to do this in such a way that there is minimum impact on the syntax and complexity of the language, i.e., to introduce the minimum number of new constructs, declarations, and concepts to be learned. Finally, we would like the implementation to be as straightforward as possible, ideally based on simple source to source expansions

    Context interchange : new features and formalisms for the intelligent integration of information

    Get PDF
    Cover title.Includes bibliographical references (p. 22-24).Supported in part by the National Financial Services Research Center (IFSRC), the PROductivity From Information Technology (PROFIT) project at MIT, ARPA, and UASF/Rome Laboratory. F30602-93-C-0160Cheng Hian Goh ... [et al.]

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Transaction management in object-oriented data base systems

    Get PDF
    Object-oriented data bases are fast gaining in popularity, especially with the advent of advanced applications like computer aided design (CAD) and multimedia data bases (MMDB). The modeling techniques required by these applications cannot be met by conventional data base systems. The semantic richness of the object-oriented model facilitates the modeling of advanced data base applications. These applications are characterized by long-duration cooperating transactions. Unlike the conventional data bases, serializability can no linger be the correctness criterion for concurrent transaction execution. A new transaction model for object-oriented data bases is needed. This dissertation describes our research in the area of transaction management for object-oriented data bases. A new transaction model for object-oriented data bases is defined. This model takes into consideration the unique requirements of the advanced applications. Data base consistency is now defined in terms of correctability. Object-oriented Correct Schedules (OOCS) and Object-oriented Correctable Schedules (OOCLS) are defined. This dissertation also describes a new concurrency control protocol that satisfies the correctness criterion for concurrent execution of transactions in an object-oriented data base environment, i.e. it allows only Object-oriented Correctable Schedules. Users of a data base interact with it through means of queries. Queries are then translated into transactions. The data base functionality necessary to support queries is also discussed in this research work
    corecore