58 research outputs found

    Event Processing and Stream Reasoning with ETALIS

    Get PDF
    This thesis presents the ETALIS Language for Events (ELE), a declarative rule-based language for Event Processing (EP) and Stream Reasoning (SR). ELE features a well-defined semantics, and provides strong event processing and reasoning capabilities. In this work we present ELE and show how its EP and SR capabilities have the potential to provide powerful real time intelligence. We provide a prototype implementation of the language, and present evaluation results for a few implemented scenarios

    Models and Algorithms for Persistent Queries over Streaming Graphs

    Get PDF
    It is natural to model and represent interaction data as graphs in a broad range of domains such as online social networks, protein interaction data, and e-commerce applications. A number of emerging applications require continuous processing and querying of interaction data that evolves at a high rate, in near real-time, which can be modelled as a streaming graph. Persistent queries, where queries are registered into the system and new results are generated incrementally as the graph edges arrive, facilitate online analysis and real-time monitoring over streaming data. Processing persistent queries over streaming graphs combines two seemingly different but challenging problems: graph querying and streaming processing. Existing systems fail to support these workloads due to (i) the complexity of graph queries that feature recursive path navigations, subgraph patterns, and path manipulation, and (ii) the unboundedness and growth rate of streaming graphs that make it infeasible to employ batch algorithms. Consequently, a growing number of applications rely on specialized solutions tailored to specific application needs. This thesis introduces foundational techniques for efficient processing of persistent queries over streaming graphs to support this emerging class of applications in a principled manner. The main contribution of this thesis is the design and development of a general-purpose streaming graph query processing framework. The novel challenges of persistent queries over streaming graphs dictate rethinking the components of the well-established query processor architecture, and this thesis introduces the models and algorithms to address these challenges uniformly. The central notion of Streaming Graph Query precisely characterizes the semantics of persistent queries over streaming graphs, making it possible to reason about the expressiveness and the complexity of queries targeted by the aforementioned applications. Streaming Graph Algebra, defined as a closure of a set of operators over streaming graphs, provides the primitive building blocks for evaluating and optimizing streaming graph queries. Efficient, incremental algorithms as the physical implementations of streaming graph algebra operators are provided, enabling streaming graph queries to be evaluated in a data-driven fashion. It is shown that the proposed algebra constitutes the foundational tool for the cost-based optimization of streaming graph queries by providing an algebraic basis for query evaluation. Overall, this thesis provides principled solutions to fundamental challenges for efficient querying of streaming graphs and describes the design and implementation of a general-purpose streaming graph query processing framework

    A Pattern Approach to Examine the Design Space of Spatiotemporal Visualization

    Get PDF
    Pattern language has been widely used in the development of visualization systems. This dissertation applies a pattern language approach to explore the design space of spatiotemporal visualization. The study provides a framework for both designers and novices to communicate, develop, evaluate, and share spatiotemporal visualization design on an abstract level. The touchstone of the work is a pattern language consisting of fifteen design patterns and four categories. In order to validate the design patterns, the researcher created two visualization systems with this framework in mind. The first system displayed the daily routine of human beings via a polygon-based visualization. The second system showed the spatiotemporal patterns of co-occurring hashtags with a spiral map, sunburst diagram, and small multiples. The evaluation results demonstrated the effectiveness of the proposed design patterns to guide design thinking and create novel visualization practices

    Acta Cybernetica : Volume 24. Number 1.

    Get PDF

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    • …
    corecore