835 research outputs found

    04271 Abstracts Collection -- Preferences: Specification, Inference, Applications

    Get PDF
    From 27.06.04 to 02.07.04, the Dagstuhl Seminar 04271 ``Preferences: Specification, Inference, Applications\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    An Abstract Interpretation Framework for Diagnosis and Verification of Timed Concurrent Constraint Languages

    Get PDF
    In this thesis, we propose a semantic framework for tccp based on abstract interpretation with the main purpose of formally verifying and debugging tccp programs. A key point for the efficacy of the resulting methodologies is the adequacy of the concrete semantics. Thus, in this thesis, much effort has been devoted to the development of a suitable small-step denotational semantics for the tccp language to start with. Our denotational semantics models precisely the small-step behavior of tccp and is suitable to be used within the abstract interpretation framework. Namely, it is defined in a compositional and bottom-up way, it is as condensed as possible (it does not contain redundant elements), and it is goal-independent (its calculus does not depend on the semantic evaluation of a specific initial agent). Another contribution of this thesis is the definition (by abstraction of our small-step denotational semantics) of a big-step denotational semantics that abstracts away from the information about the evolution of the state and keeps only the the first and the last (if it exists) state. We show that this big-step semantics is essentially equivalent to the input-output semantics. In order to fulfill our goal of formally validate tccp programs, we build different approximations of our small-step denotational semantics by using standard abstract interpretation techniques. In this way we obtain debugging and verification tools which are correct by construction. More specifically, we propose two abstract semantics that are used to formally debug tccp programs. The first one approximates the information content of tccp behavioral traces, while the second one approximates our small-step semantics with temporal logic formulas. By applying abstract diagnosis with these abstract semantics we obtain two fully-automatic verification methods for tccp

    Classes of Terminating Logic Programs

    Full text link
    Termination of logic programs depends critically on the selection rule, i.e. the rule that determines which atom is selected in each resolution step. In this article, we classify programs (and queries) according to the selection rules for which they terminate. This is a survey and unified view on different approaches in the literature. For each class, we present a sufficient, for most classes even necessary, criterion for determining that a program is in that class. We study six classes: a program strongly terminates if it terminates for all selection rules; a program input terminates if it terminates for selection rules which only select atoms that are sufficiently instantiated in their input positions, so that these arguments do not get instantiated any further by the unification; a program local delay terminates if it terminates for local selection rules which only select atoms that are bounded w.r.t. an appropriate level mapping; a program left-terminates if it terminates for the usual left-to-right selection rule; a program exists-terminates if there exists a selection rule for which it terminates; finally, a program has bounded nondeterminism if it only has finitely many refutations. We propose a semantics-preserving transformation from programs with bounded nondeterminism into strongly terminating programs. Moreover, by unifying different formalisms and making appropriate assumptions, we are able to establish a formal hierarchy between the different classes.Comment: 50 pages. The following mistake was corrected: In figure 5, the first clause for insert was insert([],X,[X]

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Rule-Based Software Verification and Correction

    Full text link
    The increasing complexity of software systems has led to the development of sophisticated formal Methodologies for verifying and correcting data and programs. In general, establishing whether a program behaves correctly w.r.t. the original programmer s intention or checking the consistency and the correctness of a large set of data are not trivial tasks as witnessed by many case studies which occur in the literature. In this dissertation, we face two challenging problems of verification and correction. Specifically, verification and correction of declarative programs, and the verification and correction of Web sites (i.e. large collections of semistructured data). Firstly, we propose a general correction scheme for automatically correcting declarative, rule-based programs which exploits a combination of bottom-up as well as topdown inductive learning techniques. Our hybrid hodology is able to infer program corrections that are hard, or even impossible, to obtain with a simpler,automatic top-down or bottom-up learner. Moreover, the scheme will be also particularized to some well-known declarative programming paradigm: that is, the functional logic and the functional programming paradigm. Secondly, we formalize a framework for the automated verification of Web sites which can be used to specify integrity conditions for a given Web site, and then automatically check whether these conditions are fulfilled. We provide a rule-based, formal specification language which allows us to define syntactic as well as semantic properties of the Web site. Then, we formalize a verification technique which detects both incorrect/forbidden patterns as well as lack of information, that is, incomplete/missing Web pages. Useful information is gathered during the verification process which can be used to repair the Web site. So, after a verification phase, one can also infer semi-automatically some possible corrections in order to fix theWeb site. The methodology is based on a novel rewritBallis, D. (2005). Rule-Based Software Verification and Correction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194

    Transactions and updates in deductive databases

    Get PDF
    n this paper we develop a new approach providing a smooth integration of extensional updates and declarative query language for deductive databases. The approach is based on a declarative speci cation of updates in rule bodies. Updates are not executed as soon are evaluated. Instead, they are collectedand then applied to the database when the query evaluation is completed. We call this approach non-immediate update semantics. We provide a top down and equivalent bottom-up semantics which re ect the corresponding computation models. We also package set of updates into transactions and we provide a formal semantics for transactions. Then, in order to handle complex transactions, we extend the transaction language with control constructors still perserving formal semantics and semantics equivalence

    Sampler Programs: The Stable Model Semantics of Abstract Constraint Programs Revisited

    Get PDF
    Abstract constraint atoms provide a general framework for the study of aggregates utilized in answer set programming. Such primitives suitably increase the expressive power of rules and enable more concise representation of various domains as answer set programs. However, it is non-trivial to generalize the stable model semantics for programs involving arbitrary abstract constraint atoms. For instance, a nondeterministic variant of the immediate consequence operator is needed, or the definition of stable models cannot be stated directly using primitives of logic programs. In this paper, we propose sampler programs as a relaxation of abstract constraint programs that better lend themselves to the program transformation involved in the definition of stable models. Consequently, the declarative nature of stable models can be restored for sampler programs and abstract constraint programs are also covered if decomposed into sampler programs. Moreover, we study the relationships of the classes of programs involved and provide a characterization in terms of abstract but essentially deterministic computations. This result indicates that all nondeterminism related with abstract constraint atoms can be resolved at the level of program reduct when sampler programs are used as the intermediate representation
    • …
    corecore