2,077 research outputs found

    Sustainable supply chain management trends in world regions: A data-driven analysis

    Get PDF
    This study proposes a data-driven analysis that describes the overall situation and reveals the factors hindering improvement in the sustainable supply chain management field. The literature has presented a summary of the evolution of sustainable supply chain management across attributes. Prior studies have evaluated different parts of the supply chain as independent entities. An integrated systematic assessment is absent in the extant literature and makes it necessary to identify potential opportunities for research direction. A hybrid of data-driven analysis, the fuzzy Delphi method, the entropy weight method and fuzzy decision-making trial and evaluation laboratory is adopted to address uncertainty and complexity. This study contributes to locating the boundary of fundamental knowledge to advance future research and support practical execution. Valuable direction is provided by reviewing the existing literature to identify the critical indicators that need further examination. The results show that big data, closed-loop supply chains, industry 4.0, policy, remanufacturing, and supply chain network design are the most important indicators of future trends and disputes. The challenges and gaps among different geographical regions is offered that provides both a local viewpoint and a state-of-the-art advanced sustainable supply chain management assessment

    Conventional milling into CNC machine tool remanufacturing: Sustainability modeling

    Get PDF
    Aims: Sustainability modeling for conventional milling into CNC machine tool remanufacturing-upgrading. Study design: Remanufacturing-upgrading of conventional milling into CNC machine in its mechanical part, it is merely traditional remanufacturing process of conventional milling where gearbox can be eliminated due to use of motorized axes. Lead screws can be replaced with motorized ball screws. Heavy parts of machine bed such column, knee and saddle are reused. A group of criteria are selected to conduct comprehensive sustainability assessment of remanufacturing-upgrading process include: 1. Remanufacturing cost: It is the cost of milling remanufacturing into CNC machine. 2. Remanufacturing time: It is the duration of time required for milling remanufacturing into CNC machine. 3. Accuracy: It is an expected technical performance of remanufactured milling into CNC machine. 4. Reliability: It is an expected technical performance of remanufactured milling into CNC machine. 5. Processing efficiency: It is the man-hour based productivity efficiency of a remanufactured milling into CNC machine. 6. Processing range: It is the flexibility of remanufactured machine tool into CNC machine. 7. Ergonomics: It is the interaction among operator, remanufactured milling into CNC machine tool and other system unit through the cell of manufacturing. Conventional machine tool into CNC machine remanufacturing-upgrading experience is used to project the suitable literature comparatively to construct sustainability assessment model. Sustainability assessment models in field of remanufacturing-upgrading are reviewed and modified to accommodate new changes that accompany the current case study. Place and Duration of Study: Middle Technical University, Institute of Technology-Baghdad, Mechanical Techniques Department, between February 2020 and July 2020. Methodology: Literature survey in area of remanufacturing assessment and remanufacturing sustainability assessment. Comparative literature based assessment application. Classification of literature sample. Re-representation of discussions and conclusions. Graphical representation of results. Isolation of criteria. Case study definition. Weighting of criteria. Triangular fuzzication of criteria. Weighting of satisfaction. Global weights calculation. Sustainability Index weight calculation. Results: Summation of sub-sustainabilities index weights is within limit of consistency. Environmental sustainability literature is predominated to be followed by economic and technical sustainbilities literature. Conclusion: Economic, environmental and social sub-sustainabilities are of good performances and directed toward sustainability. Social and management sustainability are interlinked and require more studies to be directed toward sustainability

    Assessing the Remanufacturability of Office Furiniture: A Multi-Criteria Decision Making Approach

    Get PDF
    While the average life cycle of consumer goods is continuously decreasing, the amount of used product at their end-of-life (EOL) is accumulating fast at and at the same pace. Most EOL products end up in landfills, and many of which are not biodegradable. These two challenges have necessitated renewed global interest in product EOL management strategies by manufacturers, third party companies, consumers and governments. Remanufacturing is one of the EOL strategies which is highly environmental-friendly. Additionally, remanufacturing is seen as one of the highly profitable re-use business strategies. The selling price of remanufactured products is usually about 50—80% of a new one, making remanufacturing a win—win solution, saving both money and preserving the environment as well as raising the bottom-line of enterprises. Through the literature review of remanufacturing, we realize many researchers in this area have focused on a few product categories such as automotive, electrical and electronic equipment as well as ink cartridge, thus accelerating innovations for the remanufacture of these product categories. There is therefore, a need to explore the remanufaturability of other products, especially the ones with high market potential growth as well as profit margin. Furniture industry is the one that fits the description and is the focus of this thesis. The goal of this exploratory research is to present the first framework of its kind that aims at assessing the remanufacturability of office furniture. The proposed evaluation model considers three aspects of the assessment problem: economic, social and environmental to obtain a holistic view of remanufacturability of office furniture. We apply the fuzzy TOPSIS methodology to deal with incomplete and often subjective information during the evaluation. Furthermore, we validate our evaluation model using published research data for a multi-criteria allocation decision making (MCDM) problem. Through the model validation, we show that the proposed evaluation model has the capability to solve MCDM problems. Lastly, a case study which involves three pieces of office furniture is used to illustrate the function of the proposed model

    How can faba-bean cropping contribute to a more sustainable future European agriculture?:Analysis of transition opportunities and barriers in Denmark

    Get PDF

    Development of a methodology to establish a component hierarchy for remanufacturing solutions for complex mechanical assemblies

    Get PDF
    Research into effective remanufacturing is recently new and is often concentrated on ensuring that the design of new products to market considers the reuse and reclaim after use. However, the pressure on landfill is already high and remanufacturing solutions are required for products currently at the end of their useful life. The vast majority of these items were produced without consideration of an end-of-life strategy. Remanufacturers are often not the original equipment manufacturer (OEM) but may be third-party contract remanufacturers or independent remanufacturers. OEMs are often very protective of their intellectual property and will not share information even with their contracted partners [1]. Consequently, successful remanufacture is often complicated by the need to “reverse engineer” (often by the disassembly and measurement of new purchased core) a product owing to a lack of available technical information. This can have a significant impact on the speed to market of a remanufactured product. Research [1] has shown that one of the key indicators for remanufacture is a short lead-time to market. This has been partly addressed by research into establishing the viability of remanufacture, however the complex mathematical models developed [2, 3, 4, 5], usually based on remanufacturing costs, do not seem to have been widely adopted by industry. There is a paucity of research into the business of remanufacturing once the initial decision to remanufacture is made and in particular into the order in which remanufacturers should concentrate their efforts. Empirical evidence together with the author’s experience working for a remanufacturer, who is both an OEM and contract remanufacturer, suggests that timely remanufacture of complex assemblies is often jeopardised by the unexpected need to develop remanufacturing solutions for individual components. These components are often relatively minor in the overall assembly but their importance is elevated when a new remanufacturing solution is required. The majority of focus is usually placed onto large, high-value components, although this may not always be the most efficient use of resource. Remanufacturers have grown used to developing innovative in-house solutions to problems but the time taken and the cost involved can threaten a viable remanufacturing programme

    Performance measurement and KPIs for remanufacturing

    Get PDF
    The paper provides a brief background to remanufacturing and the general use of Performance Measurement and Key Performance Indicators (KPIs) before introducing selected and newly formulated KPIs designed specifically for remanufacturing. Their relationships with the remanufacturing challenges faced by two contrasting remanufacturing businesses and the wider reman industry are described in detail. Subsets of KPIs forming a ‘Balanced Scorecard’ for each of the two remanufacturing cases conclude the paper. They arise through close working with Centro Ricerche FIAT (CRF) and SKF, and are triangulated by literature review and wider expert interviews. The two businesses represent contrasting remanufacturing scenarios: well-established high-volume low-margin automotive engine remanufacturing by the OEM ( >1000 units per year, < €10 k per unit) verses low-volume high-value wind turbine gearbox reman by an independent start-up ( €100 k per unit). The 10 general production engineering KPIs selected for the reman KPI toolbox are as follows: Work In Progress (WIP), Overall Equipment Effectiveness (OEE), Lead Time (LT), Cycle Time (CT), Hours Per Unit (HPU), Product Margin (PM), Quotation Accuracy (QA), Number of Concessions (NC), Number of managed mBOMs (BOM), and Personnel Saturation (PS). The Eco KPIs selected are: Material Used (MU), Recycled Material Used (RMU), Direct Energy Consumption (ECD), Indirect Energy Consumption (ECI), Water Withdrawal (WW), Green House Gas emissions (GHG), Total Waste (TW) by weight. The 8 Remanufacturing KPIs compiled and formulated as part of this research are: Core / Product Ratio (CPR), Core / Product Value Ratio (CPV), New Component Costs (NCC), Component Salvage Rate (SRC), Product Salvage Rate (SRP), Core Disposal Rate (CDR), Core Class Accuracy (CCA), and Core Class Distribution (CCD)

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies
    corecore