591 research outputs found

    Belief-space Planning for Active Visual SLAM in Underwater Environments.

    Full text link
    Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is limited, and environment features may be sparsely- distributed. In these situations, the path taken by the robot can drastically affect the performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure successful task completion. This document proposes novel research in belief-space planning for active visual SLAM in underwater environments. Our motivating application is ship hull inspection with an autonomous underwater robot. We design a Gaussian belief-space planning formulation that accounts for the randomness of the loop-closure measurements in visual SLAM and serves as the mathematical foundation for the research in this thesis. Combining this planning formulation with sampling-based techniques, we efficiently search for loop-closure actions throughout the environment and present a two-step approach for selecting revisit actions that results in an opportunistic active SLAM framework. The proposed active SLAM method is tested in hybrid simulations and real-world field trials of an underwater robot performing inspections of a physical modeling basin and a U.S. Coast Guard cutter. To reduce computational load, we present research into efficient planning by compressing the representation and examining the structure of the underlying SLAM system. We propose the use of graph sparsification methods online to reduce complexity by planning with an approximate distribution that represents the original, full pose graph. We also propose the use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform efficient incremental updates when evaluating candidate plans that are similar. As a final contribution, we design risk-averse objective functions that account for the randomness within our planning formulation. We show that this aversion to uncertainty in the posterior belief leads to desirable and intuitive behavior within active SLAM.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133303/1/schaves_1.pd

    Active learning with gaussian processes for object categorization

    Get PDF
    Discriminative methods for visual object category recognition are typically non-probabilistic, predicting class labels but not directly providing an estimate of uncertainty. Gaussian Processes (GPs) are powerful regression techniques with explicit uncertainty models; we show here how Gaussian Processes with covariance functions defined based on a Pyramid Match Kernel (PMK) can be used for probabilistic object category recognition. The uncertainty model provided by GPs offers confidence estimates at test points, and naturally allows for an active learning paradigm in which points are optimally selected for interactive labeling. We derive a novel active category learning method based on our probabilistic regression model, and show that a significant boost in classification performance is possible, especially when the amount of training data for a category is ultimately very small. 1

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Information-Driven Adaptive Structured-Light Scanners

    Get PDF
    Sensor planning and active sensing, long studied in robotics, adapt sensor parameters to maximize a utility function while constraining resource expenditures. Here we consider information gain as the utility function. While these concepts are often used to reason about 3D sensors, these are usually treated as a predefined, black-box, component. In this paper we show how the same principles can be used as part of the 3D sensor. We describe the relevant generative model for structured-light 3D scanning and show how adaptive pattern selection can maximize information gain in an open-loop-feedback manner. We then demonstrate how different choices of relevant variable sets (corresponding to the subproblems of locatization and mapping) lead to different criteria for pattern selection and can be computed in an online fashion. We show results for both subproblems with several pattern dictionary choices and demonstrate their usefulness for pose estimation and depth acquisition.United States. Office of Naval Research (Grant N00014-09-1-1051)United States. Army Research Office (Grant W911NF-11- 1-0391)United States. Office of Naval Research (Grant N00014- 11-1-0688

    Segmentation Given Partial Grouping Constraints

    Get PDF
    We consider data clustering problems where partial grouping is known a priori. We formulate such biased grouping problems as a constrained optimization problem, where structural properties of the data define the goodness of a grouping and partial grouping cues define the feasibility of a grouping. We enforce grouping smoothness and fairness on labeled data points so that sparse partial grouping information can be effectively propagated to the unlabeled data. Considering the normalized cuts criterion in particular, our formulation leads to a constrained eigenvalue problem. By generalizing the Rayleigh-Ritz theorem to projected matrices, we find the global optimum in the relaxed continuous domain by eigendecomposition, from which a near-global optimum to the discrete labeling problem can be obtained effectively. We apply our method to real image segmentation problems, where partial grouping priors can often be derived based on a crude spatial attentional map that binds places with common salient features or focuses on expected object locations. We demonstrate not only that it is possible to integrate both image structures and priors in a single grouping process, but also that objects can be segregated from the background without specific object knowledge

    3D shape matching and registration : a probabilistic perspective

    Get PDF
    Dense correspondence is a key area in computer vision and medical image analysis. It has applications in registration and shape analysis. In this thesis, we develop a technique to recover dense correspondences between the surfaces of neuroanatomical objects over heterogeneous populations of individuals. We recover dense correspondences based on 3D shape matching. In this thesis, the 3D shape matching problem is formulated under the framework of Markov Random Fields (MRFs). We represent the surfaces of neuroanatomical objects as genus zero voxel-based meshes. The surface meshes are projected into a Markov random field space. The projection carries both geometric and topological information in terms of Gaussian curvature and mesh neighbourhood from the original space to the random field space. Gaussian curvature is projected to the nodes of the MRF, and the mesh neighbourhood structure is projected to the edges. 3D shape matching between two surface meshes is then performed by solving an energy function minimisation problem formulated with MRFs. The outcome of the 3D shape matching is dense point-to-point correspondences. However, the minimisation of the energy function is NP hard. In this thesis, we use belief propagation to perform the probabilistic inference for 3D shape matching. A sparse update loopy belief propagation algorithm adapted to the 3D shape matching is proposed to obtain an approximate global solution for the 3D shape matching problem. The sparse update loopy belief propagation algorithm demonstrates significant efficiency gain compared to standard belief propagation. The computational complexity and convergence property analysis for the sparse update loopy belief propagation algorithm are also conducted in the thesis. We also investigate randomised algorithms to minimise the energy function. In order to enhance the shape matching rate and increase the inlier support set, we propose a novel clamping technique. The clamping technique is realized by combining the loopy belief propagation message updating rule with the feedback from 3D rigid body registration. By using this clamping technique, the correct shape matching rate is increased significantly. Finally, we investigate 3D shape registration techniques based on the 3D shape matching result. Based on the point-to-point dense correspondences obtained from the 3D shape matching, a three-point based transformation estimation technique is combined with the RANdom SAmple Consensus (RANSAC) algorithm to obtain the inlier support set. The global registration approach is purely dependent on point-wise correspondences between two meshed surfaces. It has the advantage that the need for orientation initialisation is eliminated and that all shapes of spherical topology. The comparison of our MRF based 3D registration approach with a state-of-the-art registration algorithm, the first order ellipsoid template, is conducted in the experiments. These show dense correspondence for pairs of hippocampi from two different data sets, each of around 20 60+ year old healthy individuals
    • …
    corecore