443,456 research outputs found

    Data-Driven Modeling of the Airport Configuration Selection Process

    Get PDF
    The runway configuration is the set of the runways at an airport that are used for arrivals and departures at any time. While many factors, including weather, expected demand, environmental considerations, and coordination of flows with neighboring airports, influence the choice of runway configuration, the actual selection decision is made by air traffic controllers in the airport tower. As a result, the capacity of an airport at any time is dependent on the behavior of human decision makers. This paper develops a statistical model to characterize the configuration selection decision process using empirical observations. The proposed approach, based on the discrete-choice modeling framework, identifies the influence of various factors in terms of the utility function of the decision maker. The parameters of the utility functions are estimated through likelihood maximization. Correlations between different alternatives are captured using a multinomial “nested logit” model. A key novelty of this study is the quantitative assessment of the effect of inertia, or the resistance to configuration changes, on the configuration selection process. The developed models are used to predict the runway configuration 3 h ahead of time, given operating conditions such as wind, visibility, and demand. Case studies based on data from Newark (EWR) and LaGuardia (LGA) airports show that the proposed model predicts runway configuration choices significantly better than a baseline model that only considers the historical frequencies of occurrence of different configurations.National Science Foundation (U.S.) (Grant 1239054

    Optical design of the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Get PDF
    The runway configuration is the set of the runways at an airport that are used for arrivals and departures at any time. While many factors, including weather, expected demand, environmental considerations, and coordination of flows with neighboring airports, influence the choice of runway configuration, the actual selection decision is made by air traffic controllers in the airport tower. As a result, the capacity of an airport at any time is dependent on the behavior of human decision makers. This paper develops a statistical model to characterize the configuration selection decision process using empirical observations. The proposed approach, based on the discrete-choice modeling framework, identifies the influence of various factors in terms of the utility function of the decision maker. The parameters of the utility functions are estimated through likelihood maximization. Correlations between different alternatives are captured using a multinomial “nested logit” model. A key novelty of this study is the quantitative assessment of the effect of inertia, or the resistance to configuration changes, on the configuration selection process. The developed models are used to predict the runway configuration 3 h ahead of time, given operating conditions such as wind, visibility, and demand. Case studies based on data from Newark (EWR) and LaGuardia (LGA) airports show that the proposed model predicts runway configuration choices significantly better than a baseline model that only considers the historical frequencies of occurrence of different configurations.United States. National Aeronautics and Space Administration (NNH14ZDA001N-EPDS

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities

    Sampling algorithms for validation of supervised learning models for Ising-like systems

    Full text link
    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ID-MH that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new "block-ID" sampling strategy: it decomposes the given structure into square blocks with lattice dimension no greater than 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).Comment: 43 pages and 16 figure

    Estimation of maximum-likelihood discrete-choice models of the runway configuration selection process

    Get PDF
    The runway configuration is the subset of the runways at an airport that are used for arrivals and departures at any time. Many factors, including weather (wind and visibility), expected arrival and departure demand, environmental considerations such as noise abatement procedures, and coordination of flows with neighboring airports, govern the choice of runway configuration. This paper develops a statistical model to characterize this process using empirical observations. In particular, we demonstrate how a maximum-likelihood discrete-choice model of the runway configuration process can be estimated using aggregate traffic count and other archived data at an airport, that are available over 15 minute intervals. We show that the estimated discrete-choice model not only identifies the influence of various factors in decision-making, but also provides significantly better predictions of runway configuration changes than a baseline model based on the frequency of occurrence of different configurations. The approach is illustrated using data from Newark (EWR) and LaGuardia (LGA) airports

    A three-stage model for closed-loop supply chain configuration under uncertainty

    Get PDF
    In this paper, a general closed-loop supply chain (CLSC) network is configured which consists of multiple customers, parts, products, suppliers, remanufacturing subcontractors, and refurbishing sites. We propose a three-stage model including evaluation, network configuration, and selection and order allocation. In the first stage, suppliers, remanufacturing subcontractors, and refurbishing sites are evaluated based on a new quality function deployment (QFD) model. The proposed QFD model determines the relationship between customer requirements, part requirements, and process requirements. In addition, the fuzzy sets theory is utilised to overcome the uncertainty in the decision-making process. In the second stage, the closed-loop supply chain network is configured by a stochastic mixed-integer nonlinear programming model. It is supposed that demand is an uncertain parameter. Finally in the third stage, suppliers, remanufacturing subcontractors, and refurbishing sites are selected and order allocation is determined. To this end, a multi-objective mixed-integer linear programming model is presented. An illustrative example is conducted to show the process. The main novel innovation of the proposed model is to consider the CLSC network configuration and selection process simultaneously, under uncertain demand and in an uncertain decision-making environment

    A generic approach to the evolution of interaction in ubiquitous systems

    Get PDF
    This dissertation addresses the challenge of the configuration of modern (ubiquitous, context-sensitive, mobile et al.) interactive systems where it is difficult or impossible to predict (i) the resources available for evolution, (ii) the criteria for judging the success of the evolution, and (iii) the degree to which human judgements must be involved in the evaluation process used to determine the configuration. In this thesis a conceptual model of interactive system configuration over time (known as interaction evolution) is presented which relies upon the follow steps; (i) identification of opportunities for change in a system, (ii) reflection on the available configuration alternatives, (iii) decision-making and (iv) implementation, and finally iteration of the process. This conceptual model underpins the development of a dynamic evolution environment based on a notion of configuration evaluation functions (hereafter referred to as evaluation functions) that provides greater flexibility than current solutions and, when supported by appropriate tools, can provide a richer set of evaluation techniques and features that are difficult or impossible to implement in current systems. Specifically this approach has support for changes to the approach, style or mode of use used for configuration - these features may result in more effective systems, less effort involved to configure them and a greater degree of control may be offered to the user. The contributions of this work include; (i) establishing the the need for configuration evolution through a literature review and a motivating case study experiment, (ii) development of a conceptual process model supporting interaction evolution, (iii) development of a model based on the notion of evaluation functions which is shown to support a wide range of interaction configuration approaches, (iv) a characterisation of the configuration evaluation space, followed by (v) an implementation of these ideas used in (vi) a series of longitudinal technology probes and investigations into the approaches

    Stochastic single machine scheduling problem as a multi-stage dynamic random decision process

    Get PDF
    In this work, we study a stochastic single machine scheduling problem in which the features of learning effect on processing times, sequence-dependent setup times, and machine configuration selection are considered simultaneously. More precisely, the machine works under a set of configurations and requires stochastic sequence-dependent setup times to switch from one configuration to another. Also, the stochastic processing time of a job is a function of its position and the machine configuration. The objective is to find the sequence of jobs and choose a configuration to process each job to minimize the makespan. We first show that the proposed problem can be formulated through two-stage and multi-stage Stochastic Programming models, which are challenging from the computational point of view. Then, by looking at the problem as a multi-stage dynamic random decision process, a new deterministic approximation-based formulation is developed. The method first derives a mixed-integer non-linear model based on the concept of accessibility to all possible and available alternatives at each stage of the decision-making process. Then, to efficiently solve the problem, a new accessibility measure is defined to convert the model into the search of a shortest path throughout the stages. Extensive computational experiments are carried out on various sets of instances. We discuss and compare the results found by the resolution of plain stochastic models with those obtained by the deterministic approximation approach. Our approximation shows excellent performances both in terms of solution accuracy and computational time
    • …
    corecore