713 research outputs found

    Fast-SSC-Flip Decoding of Polar Codes

    Full text link
    Polar codes are widely considered as one of the most exciting recent discoveries in channel coding. For short to moderate block lengths, their error-correction performance under list decoding can outperform that of other modern error-correcting codes. However, high-speed list-based decoders with moderate complexity are challenging to implement. Successive-cancellation (SC)-flip decoding was shown to be capable of a competitive error-correction performance compared to that of list decoding with a small list size, at a fraction of the complexity, but suffers from a variable execution time and a higher worst-case latency. In this work, we show how to modify the state-of-the-art high-speed SC decoding algorithm to incorporate the SC-flip ideas. The algorithmic improvements are presented as well as average execution-time results tailored to a hardware implementation. The results show that the proposed fast-SSC-flip algorithm has a decoding speed close to an order of magnitude better than the previous works while retaining a comparable error-correction performance.Comment: 5 pages, 3 figures, appeared at IEEE Wireless Commun. and Netw. Conf. (WCNC) 201

    Threshold-Based Fast Successive-Cancellation Decoding of Polar Codes

    Get PDF
    Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length 10241024 with code rates 1/41/4, 1/21/2, and 3/43/4 show that our proposed algorithm reduces the required clock cycles by up to 8%8\%, and leads to a 10%10\% improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by 57%57\% at Eb/N0=5.0\mathrm{E_b}/\mathrm{N_0} = 5.0~dB.Comment: 14 pages, 8 figures, 5 tables, submitted to IEEE Transactions on Communication

    Symbol-Based Successive Cancellation List Decoder for Polar Codes

    Full text link
    Polar codes is promising because they can provably achieve the channel capacity while having an explicit construction method. Lots of work have been done for the bit-based decoding algorithm for polar codes. In this paper, generalized symbol-based successive cancellation (SC) and SC list decoding algorithms are discussed. A symbol-based recursive channel combination relationship is proposed to calculate the symbol-based channel transition probability. This proposed method needs less additions than the maximum-likelihood decoder used by the existing symbol-based polar decoding algorithm. In addition, a two-stage list pruning network is proposed to simplify the list pruning network for the symbol-based SC list decoding algorithm.Comment: Accepted by 2014 IEEE Workshop on Signal Processing Systems (SiPS
    • …
    corecore