22,535 research outputs found

    A decision tree-based method for protein contact map prediction

    Get PDF
    In this paper, we focus on protein contact map prediction. We describe a method where contact maps are predicted using decision tree-based model. The algorithm includes the subsequence information between the couple of analyzed amino acids. In order to evaluate the method generalization capabilities, we carry out an experiment using 173 non-homologous proteins of known structures. Our results indicate that the method can assign protein contacts with an average accuracy of 0.34, superior to the 0.25 obtained by the FNETCSS method. This shows that our algorithm improves the accuracy with respect to the methods compared, especially with the increase of protein lengt

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    ConSole: using modularity of contact maps to locate solenoid domains in protein structures.

    Get PDF
    BackgroundPeriodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis of structures of periodic proteins.ResultsConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families.ConclusionsThe ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is available for download at http://console.sanfordburnham.org

    Predicting Genetic Regulatory Response Using Classification

    Full text link
    We present a novel classification-based method for learning to predict gene regulatory response. Our approach is motivated by the hypothesis that in simple organisms such as Saccharomyces cerevisiae, we can learn a decision rule for predicting whether a gene is up- or down-regulated in a particular experiment based on (1) the presence of binding site subsequences (``motifs'') in the gene's regulatory region and (2) the expression levels of regulators such as transcription factors in the experiment (``parents''). Thus our learning task integrates two qualitatively different data sources: genome-wide cDNA microarray data across multiple perturbation and mutant experiments along with motif profile data from regulatory sequences. We convert the regression task of predicting real-valued gene expression measurement to a classification task of predicting +1 and -1 labels, corresponding to up- and down-regulation beyond the levels of biological and measurement noise in microarray measurements. The learning algorithm employed is boosting with a margin-based generalization of decision trees, alternating decision trees. This large-margin classifier is sufficiently flexible to allow complex logical functions, yet sufficiently simple to give insight into the combinatorial mechanisms of gene regulation. We observe encouraging prediction accuracy on experiments based on the Gasch S. cerevisiae dataset, and we show that we can accurately predict up- and down-regulation on held-out experiments. Our method thus provides predictive hypotheses, suggests biological experiments, and provides interpretable insight into the structure of genetic regulatory networks.Comment: 8 pages, 4 figures, presented at Twelfth International Conference on Intelligent Systems for Molecular Biology (ISMB 2004), supplemental website: http://www.cs.columbia.edu/compbio/geneclas

    Short-Range Interactions and Decision Tree-Based Protein Contact Map Predictor

    Get PDF
    In this paper, we focus on protein contact map prediction, one of the most important intermediate steps of the protein folding prob lem. The objective of this research is to know how short-range interac tions can contribute to a system based on decision trees to learn about the correlation among the covalent structures of a protein residues. We propose a solution to predict protein contact maps that combines the use of decision trees with a new input codification for short-range in teractions. The method’s performance was very satisfactory, improving the accuracy instead using all information of the protein sequence. For a globulin data set the method can predict contacts with a maximal accu racy of 43%. The presented predictive model illustrates that short-range interactions play the predominant role in determining protein structur
    corecore