251 research outputs found

    Computing Incentives for User-Based Relocation in Carsharing

    Get PDF
    Carsharing offers an environmentally friendly alternative to private car ownership. However, carsharing providers face the challenging task of matching shifting vehicle supply with fluctuating customer demand to prevent related operational inefficiencies and ensure customer satisfaction. To date, researchers have improved existing relocation strategies and developed new concepts with the use of information technology tools. Still, current literature lacks research on optimization and implementation of user-based relocation solutions. The most urgent need currently lies in the development of algorithms to compute and implement effective incentives for user-based relocation. We address these needs by utilizing a design science research approach to develop an automated machine learning-based incentive computation solution for incentivizing user-based relocation. We use a survey of 274 participants resulting in 1370 individual data points to train an incentive computation model, which is then applied within a small-scale field test. Results suggest that the algorithm computes appropriate incentives

    Designing a Crowd-Based Relocation System—The Case of Car-Sharing

    Get PDF
    Car-sharing services promise environmentally sustainable and cost-efficient alternatives to private car ownership, contributing to more environmentally sustainable mobility. However, the challenge of balancing vehicle supply and demand needs to be addressed for further improvement of the service. Currently, employees must relocate vehicles from low-demand to high-demand areas, which generates extra personnel costs, driven kilometers, and emissions. This study takes a Design Science Research (DSR) approach to develop a new way of balancing the supply and demand of vehicles in car-sharing, namely crowd-based relocation. We base our approach on crowdsourcing, a concept by which customers are requested to perform vehicle relocations. This paper reports on our comprehensive DSR project on designing and instantiating a crowd-based relocation information system (CRIS). We assessed the resulting artifact in a car-sharing simulation and conducted a real world car-sharing service system field test. The evaluation reveals that CRIS has the potential for improving vehicle availability, increasing environmental sustainability, and reducing operational costs. Further, the prescriptive knowledge derived in our DSR project can be used as a starting point to improve individual parts of the CRIS and to extend its application beyond car-sharing into other sharing services, such as power bank- or e-scooter-sharing

    Availability-based dynamic pricing on a round-trip carsharing service: an explorative analysis using agent-based simulation 

    Get PDF
    Carsharing companies aim to customize their service to increase fleet usage and revenues with different pricing schemes and offer types. Dynamic pricing policies can be designed to adjust and balance temporally and spatially cars availability but may pose some question on customers’ fairness. In this paper, we propose an explorative analysis of how an availability-based dynamic pricing scheme impacts the demand and the supply performance. The policy is simulated in MATSim and compared to a fixed pricing policy scheme. This simulation consists of analyzing the behavior of a synthetic population of car-sharing members for Berlin and the surrounding region in which is applied an availability-based dynamic pricing in which price depends on vehicle availability in booking stations. Results show that when the dynamic pricing is applied there is a light decrease in the number of bookings and people with low value of time tend to abandon the carsharing mode in favor of other modes of transportation

    CASSI: Designing a Simulation Environment for Vehicle Relocation in Carsharing

    Get PDF
    Simulations offer an efficient solution to comprehensive represent operational services and to track the impact of changing systematic factors and business constraints. Carsharing services provide users with mobility services on demand. Although research has introduced strategies to optimize efforts to set up and operate such a system, they lack reusable and flexible simulation environments. For instance, carsharing research applies simulations to better understand and solve the problem of balancing vehicle supply and demand, which operators need to solve to prevent operational inefficiencies and ensure customer satisfaction. Hence, one cannot feasibly test new balancing mechanisms directly in a real-world environment. As for now, researchers have implemented simulations from scratch, which results in high development efforts and a limited ability to compare results. In this paper, we address this gap by designing a versatile carsharing simulation tool that researchers can easily use and adapt. The tool simplifies the process of modeling a carsharing system and developing operation strategies. Furthermore, we propose various system performance measures to increase the developed solutions’ comparability

    Contributions to sustainable urban transport : decision support for alternative mobility and logistics concepts

    Get PDF
    Increasing transport activities in cities are a substantial driver for congestion and pollution, influencing urban populations’ health and quality of life. These effects are consequences of ongoing urbanization in combination with rising individual demand for mobility, goods, and services. With the goal of increased environmental sustainability in urban areas, city authorities and politics aim for reduced traffic and minimized transport emissions. To support more efficient and sustainable urban transport, this cumulative dissertation focuses on alternative transport concepts. For this purpose, scientific methods and models of the interdisciplinary information systems domain combined with elements of operations research, transportation, and logistics are developed and investigated in multiple research contributions. Different transport concepts are examined in terms of optimization and acceptance to provide decision support for relevant stakeholders. In more detail, the overarching topic of urban transport in this dissertation is divided into the complexes urban mobility (part A) in terms of passenger transport and urban logistics (part B) with a focus on the delivery of goods and services. Within part A, approaches to carsharing optimization are presented at various planning levels. Furthermore, the user acceptance of ridepooling is investigated. Part B outlines several optimization models for alternative urban parcel and e-grocery delivery concepts by proposing different network structures and transport vehicles. Conducted surveys on intentional use of urban logistics concepts give valuable hints to providers and decision makers. The introduced approaches with their corresponding results provide target-oriented support to facilitate decision making based on quantitative data. Due to the continuous growth of urban transport, the relevance of decision support in this regard, but also the understanding of the key drivers for people to use certain services will further increase in the future. By providing decision support for urban mobility as well as urban logistics concepts, this dissertation contributes to enhanced economic, social, and environmental sustainability in urban areas

    Sustainability vs. Price: Analysis of Electric Multi-Modal Vehicle Sharing Systems under Substitution Effects

    Get PDF
    To pave the path for sustainable mobility, Information Systems are a promising tool to encourage users to adopt more sustainable mobility behavior. In this study, we investigate how potential demand management interventions affect the economic and environmental metrics of a multi-modal vehicle sharing operator. To this end, we narrow our focus on two important user characteristics, namely the users\u27 flexibility and willingness to pay an additional premium for more environmentally sustainable vehicles. Our study employs a combined discrete-event and multi-agent simulation approach, which we calibrate with real-world rental data of leading free-floating vehicle sharing platforms. The results show that it is economically and ecologically disadvantageous for both the society and the fleet operator to simply increase users\u27 mode choice flexibility. However, we clearly observe that this picture flips once users are willing to pay a surcharge to rent more environmentally sustainable vehicles

    Decision support tools for car sharing systems with flexible return time and stations.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Public Bikesharing in North America During a Period of Rapid Expansion: Understanding Business Models, Industry Trends & User Impacts, MTI Report 12-29

    Get PDF
    Public bikesharing—the shared use of a bicycle fleet—is an innovative transportation strategy that has recently emerged in major cities around the world, including North America. Information technology (IT)-based bikesharing systems typically position bicycles throughout an urban environment, among a network of docking stations, for immediate access. Trips can be one-way, round-trip, or both, depending on the operator. Bikesharing can serve as a first-and-last mile connector to other modes, as well as for both short and long distance destinations. In 2012, 22 IT-based public bikesharing systems were operating in the United States, with a total of 884,442 users and 7,549 bicycles. Four IT-based programs in Canada had a total of 197,419 users and 6,115 bicycles. Two IT-based programs in Mexico had a total of 71,611 users and 3,680 bicycles. (Membership numbers reflect the total number of short- and long-term users.) This study evaluates public bikesharing in North America, reviewing the change in travel behavior exhibited by members of different programs in the context of their business models and operational environment. This Phase II research builds on data collected during our Phase I research conducted in 2012. During the 2012 research (Phase I), researchers conducted 14 expert interviews with industry experts and public officials in the United States and Canada, as well as 19 interviews with the manager and/or key staff of IT-based bikesharing organizations. For more information on the Phase I research, please see the Shaheen et al., 2012 report Public Bikesharing in North America: Early Operator and User Understanding. For this Phase II study, an additional 23 interviews were conducted with IT-based bikesharing organizations in the United States, Canada, and Mexico in Spring 2013. Notable developments during this period include the ongoing expansion of public bikesharing in North America, including the recent launches of multiple large bikesharing programs in the United States (i.e., Citi Bike in New York City, Divvy in Chicago, and Bay Area Bike Share in the San Francisco Bay Area). In addition to expert interviews, the authors conducted two kinds of surveys with bikesharing users. One was the online member survey. This survey was sent to all people for whom the operator had an email address.The population of this survey was mainly annual members of the bikesharing system, and the members took the survey via a URL link sent to them from the operator. The second survey was an on-street survey. This survey was designed for anyone, including casual users (i.e., those who are not members of the system and use it on a short-term basis), to take “on-street” via a smartphone. The member survey was deployed in five cities: Montreal, Toronto, Salt Lake City, Minneapolis-Saint Paul, and Mexico City. The on-street survey was implemented in three cities: Boston, Salt Lake City, and San Antonio
    corecore