495 research outputs found

    Modal mu-calculi

    Get PDF

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    Permutation Games for the Weakly Aconjunctive Ī¼\mu-Calculus

    Full text link
    We introduce a natural notion of limit-deterministic parity automata and present a method that uses such automata to construct satisfiability games for the weakly aconjunctive fragment of the Ī¼\mu-calculus. To this end we devise a method that determinizes limit-deterministic parity automata of size nn with kk priorities through limit-deterministic B\"uchi automata to deterministic parity automata of size O((nk)!)\mathcal{O}((nk)!) and with O(nk)\mathcal{O}(nk) priorities. The construction relies on limit-determinism to avoid the full complexity of the Safra/Piterman-construction by using partial permutations of states in place of Safra-Trees. By showing that limit-deterministic parity automata can be used to recognize unsuccessful branches in pre-tableaux for the weakly aconjunctive Ī¼\mu-calculus, we obtain satisfiability games of size O((nk)!)\mathcal{O}((nk)!) with O(nk)\mathcal{O}(nk) priorities for weakly aconjunctive input formulas of size nn and alternation-depth kk. A prototypical implementation that employs a tableau-based global caching algorithm to solve these games on-the-fly shows promising initial results

    Fixed-point elimination in the intuitionistic propositional calculus

    Full text link
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the Ī¼\mu-calculus based on intuitionistic logic is trivial, every Ī¼\mu-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given Ī¼\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal

    A Multi-Core Solver for Parity Games

    Get PDF
    We describe a parallel algorithm for solving parity games,\ud with applications in, e.g., modal mu-calculus model\ud checking with arbitrary alternations, and (branching) bisimulation\ud checking. The algorithm is based on Jurdzinski's Small Progress\ud Measures. Actually, this is a class of algorithms, depending on\ud a selection heuristics.\ud \ud Our algorithm operates lock-free, and mostly wait-free (except for\ud infrequent termination detection), and thus allows maximum\ud parallelism. Additionally, we conserve memory by avoiding storage\ud of predecessor edges for the parity graph through strictly\ud forward-looking heuristics.\ud \ud We evaluate our multi-core implementation's behaviour on parity games\ud obtained from mu-calculus model checking problems for a set of\ud communication protocols, randomly generated problem instances, and\ud parametric problem instances from the literature.\ud \u

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    On P-transitive graphs and applications

    Full text link
    We introduce a new class of graphs which we call P-transitive graphs, lying between transitive and 3-transitive graphs. First we show that the analogue of de Jongh-Sambin Theorem is false for wellfounded P-transitive graphs; then we show that the mu-calculus fixpoint hierarchy is infinite for P-transitive graphs. Both results contrast with the case of transitive graphs. We give also an undecidability result for an enriched mu-calculus on P-transitive graphs. Finally, we consider a polynomial time reduction from the model checking problem on arbitrary graphs to the model checking problem on P-transitive graphs. All these results carry over to 3-transitive graphs.Comment: In Proceedings GandALF 2011, arXiv:1106.081
    • ā€¦
    corecore