657 research outputs found

    Quantum Algorithms for Tree Isomorphism and State Symmetrization

    Full text link
    The graph isomorphism problem is theoretically interesting and also has many practical applications. The best known classical algorithms for graph isomorphism all run in time super-polynomial in the size of the graph in the worst case. An interesting open problem is whether quantum computers can solve the graph isomorphism problem in polynomial time. In this paper, an algorithm is shown which can decide if two rooted trees are isomorphic in polynomial time. Although this problem is easy to solve efficiently on a classical computer, the techniques developed may be useful as a basis for quantum algorithms for deciding isomorphism of more interesting types of graphs. The related problem of quantum state symmetrization is also studied. A polynomial time algorithm for the problem of symmetrizing a set of orthonormal states over an arbitrary permutation group is shown

    Testing isomorphism of graded algebras

    Get PDF
    We present a new algorithm to decide isomorphism between finite graded algebras. For a broad class of nilpotent Lie algebras, we demonstrate that it runs in time polynomial in the order of the input algebras. We introduce heuristics that often dramatically improve the performance of the algorithm and report on an implementation in Magma

    Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

    Get PDF

    A Decision Algorithm for Linear Isomorphism of Types with Complexity Cn(log2(n))

    Get PDF
    It is known that ordinary isomorphisms (associativity and commutativityof "times", isomorphisms for "times" unit and currying)provide a complete axiomatisation for linear isomorphism of types.One of the reasons to consider linear isomorphism of types instead ofordinary isomorphism was that better complexity could be expected.Meanwhile, no upper bounds reasonably close to linear were obtained.We describe an algorithm deciding if two types are linearly isomorphicwith complexity Cn(log2(n))

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Fast recognition of alternating groups of unknown degree

    Full text link
    We present a constructive recognition algorithm to decide whether a given black-box group is isomorphic to an alternating or a symmetric group without prior knowledge of the degree. This eliminates the major gap in known algorithms, as they require the degree as additional input. Our methods are probabilistic and rely on results about proportions of elements with certain properties in alternating and symmetric groups. These results are of independent interest; for instance, we establish a lower bound for the proportion of involutions with small support.Comment: 31 pages, submitted to Journal of Algebr

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result
    corecore