717 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Computation as conversation

    Get PDF

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page

    A dynamic epistemic framework for reasoning about conformant probabilistic plans

    Get PDF
    In this paper, we introduce a probabilistic dynamic epistemic logical framework that can be applied for reasoning and verifying conformant probabilistic plans in a single agent setting. In conformant probabilistic planning (CPP), we are looking for a linear plan such that the probability of achieving the goal after executing the plan is no less than a given threshold probability δ. Our logical framework can trace the change of the belief state of the agent during the execution of the plan and verify the conformant plans. Moreover, with this logic, we can enrich the CPP framework by formulating the goal as a formula in our language with action modalities and probabilistic beliefs. As for the main technical results, we provide a complete axiomatization of the logic and show the decidability of its validity problem

    Verification of Sometimes Termination of Lazy-Bounded Declarative Distributed Systems

    Full text link
    Declarative Distributed Systems (DDSs) are distributed systems grounded in logic programming. Although DDS model-checking is undecidable in general, we detect decidable cases by tweaking the data-source bounds, the message expressiveness, and the channel type.Comment: Published in the online proceedings of the ESSLLI 2021 Student Sessio

    Uncertain Reasoning in Justification Logic

    Get PDF
    This thesis studies the combination of two well known formal systems for knowledge representation: probabilistic logic and justification logic. Our aim is to design a formal framework that allows the analysis of epistemic situations with incomplete information. In order to achieve this we introduce two probabilistic justification logics, which are defined by adding probability operators to the minimal justification logic J. We prove soundness and completeness theorems for our logics and establish decidability procedures. Both our logics rely on an infinitary rule so that strong completeness can be achieved. One of the most interesting mathematical results for our logics is the fact that adding only one iteration of the probability operator to the justification logic J does not increase the computational complexity of the logic

    An approach to description logic with support for propositional attitudes and belief fusion

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-89765-1_8Revised Selected and Invited Papers of ISWC International Workshops, URSW 2005-2007.In the (Semantic) Web, the existence or producibility of certain, consensually agreed or authoritative knowledge cannot be assumed, and criteria to judge the trustability and reputation of knowledge sources may not be given. These issues give rise to formalizations of web information which factor in heterogeneous and possibly inconsistent assertions and intentions, and make such heterogeneity explicit and manageable for reasoning mechanisms. Such approaches can provide valuable metaknowledge in contemporary application fields, like open or distributed ontologies, social software, ranking and recommender systems, and domains with a high amount of controversies, such as politics and culture. As an approach to this, we introduce a lean formalism for the Semantic Web which allows for the explicit representation of controversial individual and group opinions and goals by means of so-called social contexts, and optionally for the probabilistic belief merging of uncertain or conflicting statements. Doing so, our approach generalizes concepts such as provenance annotation and voting in the context of ontologies and other kinds of Semantic Web knowledgeThis work was partially funded by the German National Research Foundation DFG (Br609/13-1, research project “Open Ontologies and Open Knowledge Bases”) and by the Spanish National Plan of R+D, project no. TSI2005-08225-C07-0
    • …
    corecore