92 research outputs found

    A Decentralized Processing Schema for Efficient and Robust Real-time Multi-GNSS Satellite Clock Estimation

    Get PDF
    Real-time multi-GNSS precise point positioning (PPP) requires the support of high-rate satellite clock corrections. Due to the large number of ambiguity parameters, it is difficult to update clocks at high frequency in real-time for a large reference network. With the increasing number of satellites of multi-GNSS constellations and the number of stations, real-time high-rate clock estimation becomes a big challenge. In this contribution, we propose a decentralized clock estimation (DECE) strategy, in which both undifferenced (UD) and epoch-differenced (ED) mode are implemented but run separately in different computers, and their output clocks are combined in another process to generate a unique product. While redundant UD and/or ED processing lines can be run in offsite computers to improve the robustness, processing lines for different networks can also be included to improve the clock quality. The new strategy is realized based on the Position and Navigation Data Analyst (PANDA) software package and is experimentally validated with about 110 real-time stations for clock estimation by comparison of the estimated clocks and the PPP performance applying estimated clocks. The results of the real-time PPP experiment using 12 global stations show that with the greatly improved computational efficiency, 3.14 cm in horizontal and 5.51 cm in vertical can be achieved using the estimated DECE clock

    A square root information filter for multi-GNSS real-time precise clock estimation

    Get PDF
    Real-time satellite orbit and clock estimations are the prerequisite for Global Navigation Satellite System (GNSS) real-time precise positioning services. To meet the high-rate update requirement of satellite clock corrections, the computational efficiency is a key factor and a challenge due to the rapid development of multi-GNSS constellations. The Square Root Information Filter (SRIF) is widely used in real-time GNSS data processing thanks to its high numerical stability and computational efficiency. In real-time clock estimation, the outlier detection and elimination are critical to guarantee the precision and stability of the product but could be time-consuming. In this study, we developed a new quality control procedure including the three standard steps: i.e., detection, identification, and adaption, for real-time data processing of huge GNSS networks. Effort is made to improve the computational efficiency by optimizing the algorithm to provide only the essential information required in the processing, so that it can be applied in real-time and high-rate estimation of satellite clocks. The processing procedure is implemented in the PANDA (Positioning and Navigation Data Analyst) software package and evaluated in the operational generation of real-time GNSS orbit and clock products. We demonstrated that the new algorithm can efficiently eliminate outliers, and a clock precision of 0.06 ns, 0.24 ns, 0.06 ns, and 0.11 ns can be achieved for the GPS, GLONASS, Galileo, and BDS-2 IGSO/MEO satellites, respectively. The computation time per epoch is about 2 to 3 s depending on the number of existing outliers. Overall, the algorithm can satisfy the IGS real-time clock estimation in terms of both the computational efficiency and product quality

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Ricerche di Geomatica 2011

    Get PDF
    Questo volume raccoglie gli articoli che hanno partecipato al Premio AUTeC 2011. Il premio è stato istituito nel 2005. Viene conferito ogni anno ad una tesi di Dottorato giudicata particolarmente significativa sui temi di pertinenza del SSD ICAR/06 (Topografia e Cartografia) nei diversi Dottorati attivi in Italia

    Control and supervision of an AGV with energy consumption optimization

    Get PDF
    Os veículos guiados autónomos (AGVs) ganharam enorme importância e interesse no campo da indústria. Estes são soluções populares para o transporte de bens materiais para diferentes partes das fábricas. No entanto, em muitas fábricas, os armazéns estão localizados à parte da linha de produção ou em edifícios separados, exigindo que o transporte de bens materiais seja feito exteriormente. Os ambientes exteriores representam um desafio particular para os AGVs. Por um lado, estes ambientes causam mais desgaste nos componentes dos veículos e o clima na Europa pode atingir extremos opostos, dependendo da estação do ano e das regiões. Por outro lado, estes ambientes aumentam as preocupações de segurança, uma vez que outros veículos ou peões podem circular no mesmo espaço e ao mesmo tempo. Neste projecto, um rebocador eléctrico XXL será transformado num AGV, que opera em ambiente exterior. Este veículo é responsável pelo transporte de mercadorias do final da linha de produção para o armazém exterior numa fábrica de automóveis. O principal objectivo é assegurar o seu funcionamento contínuo durante um turno de 16 horas, garantindo o mínimo de interrupções para v«carregamento da bateria. Desta forma, nesta dissertação foram abordados dois capítulos distintos: para a análise e estudo do consumo energético foi simulado a powertrain de um veículo eléctrico. Neste, foi considerado um motor de indução cujo método de controlo aplicado foi o Field Oriented Control (FOC). Para além do comportamento eléctrico, também foi simulado o modelo físico da carga, bem como o cálculo da energia eléctrica consumida. Para a navegação, foi estudada uma solução baseada na integração do GPS com o INS. Dadas as restrições temporais, apenas a solução GPS foi testada e a técnica Loosely Coupled foi abordada como uma possível solução de integração.Autonomous guided vehicles (AGVs) have gained enormous importance and interest in the industry field. These are popular solutions for transport of good and material to different parts of the factories. However, in many factories, warehouses are located apart from the factory floor or in separate buildings, requiring the transport of material goods to be done outdoors. Outdoor environments represent a particular challenge for AGVs. On one hand, these environments causes more wear and tear on vehicle components and the weather in Europe can reach opposite extremes depending on the season and regions. On the other hand, these environments increase safety concerns since other vehicles or pedestrians can circulate in the same space at the same time. In this project, an electric tugger XXL will be transformed into an AGV, which operates in outdoor environment. This vehicle is responsible for transporting goods from the end of the production line to the outside warehouse in a car manufacturing plant. The main objective is to ensure its continuous operation during a 16-hour shift, and guarantee the minimum battery charging actions. In this way, in this dissertation two distinct chapters were approached: for the analysis and study of the energy consumption it was simulated the powertrain of an electric vehicle. In this one it was considered an induction motor whose control method applied was the Field Oriented Control (FOC). Besides the electrical behaviour, also the physical model of the load was simulated as well as the calculation of the consumed electrical energy. For navigation, a solution based on the integration of GPS with INS was studied. Given the temporal constraints, only the GPS solution was tested and the loosely coupled technique was approached as a possible integration solution

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Cooperative Localization in Mobile Underwater Acoustic Sensor Networks

    Get PDF
    Die großflächige Erkundung und Überwachung von Tiefseegebieten gewinnt mehr und mehr an Bedeutung für Industrie und Wissenschaft. Diese schwer zugänglichen Areale in der Tiefsee können nur mittels Teams unbemannter Tauchbote effizient erkundet werden. Aufgrund der hohen Kosten, war bisher ein Einsatz von mehreren autonomen Unterwasserfahrzeugen (AUV) wirtschaftlich undenkbar, wodurch AUV-Teams nur in Simulationen erforscht werden konnten. In den letzten Jahren konnte jedoch eine Entwicklung hin zu günstigeren und robusteren AUVs beobachtet werden. Somit wird der Einsatz von AUV-Teams in Zukunft zu einer realen Option. Die wachsende Nachfrage nach Technologien zur Unterwasseraufklärung und Überwachung konnte diese Entwicklung noch zusätzlich beschleunigen. Eine der größten technischen Hürden für tief tauchende AUVs ist die Unterwasserlokalisierug. Satelitengestützte Navigation ist in der Tiefe nicht möglich, da Radiowellen bereits nach wenigen Metern im Wasser stark an Intensität verlieren. Daher müssen neue Ansätze für die Unterwasserlokalisierung entwickelt werden die sich auch für Fahrzeugenverbände skalieren lassen. Der Einsatz von AUV-Teams ermöglicht nicht nur völlig neue Möglichkeiten der Kooperation, sondern erlaubt auch jedem einzelnen AUV von den Navigationsdaten der anderen Fahrzeuge im Verband zu profitieren, um die eigene Lokalisierung zu verbessern. In dieser Arbeit wird ein kooperativer Lokalisierungsansatz vorgestellt, welcher auf dem Nachrichtenaustausch durch akustische Ultra-Short Base-Line (USBL) Modems basiert. Ein akustisches Modem ermöglicht die Übertragung von Datenpaketen im Wasser, wärend ein USBL-Sensor die Richtung einer akustischen Quelle bestimmen kann. Durch die Kombination von Modem und Sensor entsteht ein wichtiges Messinstrument für die Unterwasserlokalisierung. Wenn ein Fahrzeug ein Datenpaket mit seiner eignen Position aussendet, können andere Fahrzeuge mit einem USBL-Modem diese Nachricht empfangen. In Verbindung mit der Richtungsmessung zur Quelle, können diese Daten von einem Empfangenden AUV verwendet werden, um seine eigene Positionsschatzung zu verbessern. Diese Arbeit schlägt einen Ansatz zur Fusionierung der empfangenen Nachricht mit der Richtungsmessung vor, welcher auch die jeweiligen Messungenauigkeiten berücksichtigt. Um die Messungenauigkeit des komplexen USBL-Sensors bestimmen zu können, wurde zudem ein detailliertes Sensormodell entwickelt. Zunächst wurden existierende Ansätze zur kooperativen Lokalisierung (CL) untersucht, um daraus eine Liste von erwünschten Eigenschaften für eine CL abzuleiten. Darauf aufbauend wurde der Deep-Sea Network Lokalisation (DNL) Ansatz entwickelt. Bei DNL handelt es sich um eine CL Methode, bei der die Skalierbarkeit sowie die praktische Anwendbarkeit im Fokus stehen. DNL ist als eine Zwischenschicht konzipiert, welche USBL-Modem und Navigationssystem miteinander verbindet. Es werden dabei Messwerte und Kommunikationsdaten des USBL zu einer Standortbestimmung inklusive Richtungsschätzung fusioniert und an das Navigationssystem weiter geleitet, ähnlich einem GPS-Sensor. Die Funktionalität von USBL-Modell und DNL konnten evaluiert werden anhand von Messdaten aus Seeerprobungen in der Ostsee sowie im Mittelatlantik. Die Qualität einer CL hangt häufig von vielen unterschiedlichen Faktoren ab. Die Netzwerktopologie muss genauso berücksichtig werden wie die Lokalisierungsfähigkeiten jedes einzelnen Teilnehmers. Auch das Kommunikationsverhalten der einzelnen Teilnehmer bestimmt, welche Informationen im Netzwerk vorhanden sind und hat somit einen starken Einfluss auf die CL. Um diese Einflussfaktoren zu untersuchen, wurden eine Reihe von Szenarien simuliert, in denen Kommunikationsverhalten und Netzwerktopologie für eine Gruppe von AUVs variiert wurden. In diesen Experimenten wurden die AUVs durch ein Oberflächenfahrzeug unterstützt, welches seine geo-referenzierte Position über DNL an die getauchten Fahrzeuge weiter leitete. Anhand der untersuchten Topologie können die Experimente eingeteilt werden in Single-Hop und Multi-Hop. Single-Hop bedeutet, dass jedes AUV sich in der Sendereichweite des Oberflächenfahrzeugs befindet und dessen Positionsdaten auf direktem Wege erhält. Wie die Ergebnisse der Single-Hop Experimente zeigen, kann der Lokalisierungsfehler der AUVs eingegrenzt werden, wenn man DNL verwendet. Dabei korreliert der Lokalisierungsfehler mit der kombinierten Ungenauigkeit von USBL-Messung und Oberflächenfahrzeugposition. Bei den Multi-Hop Experimenten wurde die Topologie so geändert, dass sich nur eines der AUVs in direkter Sendereichweite des Oberflächenfahrzeugs befindet. Dieses AUV verbessert seine Position mit den empfangen Daten des Oberflächenfahrzeugs und sendet wiederum seine verbesserte Position an die anderen AUVs. Auch hier konnte gezeigt werden, dass sich der Lokalisierungfehler der Gruppe mit DNL einschränken lässt. Ändert man nun das Schema der Kommunikation so, dass alle AUVs zyklisch ihre Position senden, zeigte sich eine Verschlechterung der Lokalisierungsqualität der Gruppe. Dieses unerwartet Ergebnis konnte auf einen Teil des DNL-Algorithmus zurück geführt werden. Da die verwendete USBL-Klasse nur die Richtung eines Signals misst, nicht jedoch die Entfernung zum Sender, wird in der DNL-Schicht eine Entfernungsschatzung vorgenommen. Wenn die Kommunikation nicht streng unidirektional ist, entsteht eine Ruckkopplungsschleife, was zu fehlerhaften Entfernungsschatzungen führt. Im letzten Experiment wird gezeigt wie sich dieses Problem vermeiden lasst, mithilfe einer relativ neue USBL-Klasse, die sowohl Richtung als auch Entfernung zum Sender misst. Die zwei wesentlichen Beiträge dieser Arbeit sind das USBL-Model zum einen und zum Anderen, der neue kooperative Lokalisierungsansatz DNL. Mithilfe des Sensormodels lassen sich nicht nur Messabweichungen einer USBL-Messung bestimmen, es kann auch dazu genutzt werden, einige Fehlereinflüsse zu korrigieren. Mit DNL wurde eine skalierbare CL-Methode entwickelt, die sich gut für den den Einsatz bei mobilen Unterwassersensornetzwerken eignet. Durch das Konzept als Zwischenschicht, lasst sich DNL einfach in bestehende Navigationslösungen integrieren, um die Langzeitstabilität der Navigation für große Verbände von tiefgetauchten Fahrzeugen zu gewährleisten. Sowohl USBL-Model als auch DNL sind dabei so ressourcenschonend, dass sie auf dem Computer eines Standard USBL laufen können, ohne die ursprüngliche Funktionalität einzuschränken, was den praktischen Einsatz zusätzlich vereinfacht

    Design and Evaluation of Compression, Classification and Localization Schemes for Various IoT Applications

    Get PDF
    Nowadays we are surrounded by a huge number of objects able to communicate, read information such as temperature, light or humidity, and infer new information through ex- changing data. These kinds of objects are not limited to high-tech devices, such as desktop PC, laptop, new generation mobile phone, i.e. smart phone, and others with high capabilities, but also include commonly used object, such as ID cards, driver license, clocks, etc. that can made smart by allowing them to communicate. Thus, the analog world of just a few years ago is becoming the a digital world of the Inter- net of Things (IoT), where the information from a single object can be retrieved from the Internet. The IoT paradigm opens several architectural challenges, including self-organization, self-managing, self-deployment of the smart objects, as well as the problem of how to minimize the usage of the limited resources of each device. The concept of IoT covers a lot of communication paradigms such as WiFi, Radio Frequency Identification (RFID), and Wireless Sensor Network (WSN). Each paradigm can be thought of as an IoT island where each device can communicate directly with other devices. The thesis is divided in sections in order to cover each problem mentioned above. The first step is to understand the possibility to infer new knowledge from the deployed device in a scenario. For this reason, the research is focused on the web semantic, web 3.0, to assign a semantic meaning to each thing inside the architecture. The sole semantic concept is unusable to infer new information from the data gathered; in fact, it is necessary to organize the data through a hierarchical form defined by an Ontology. Through the exploitation of the Ontology, it is possible to apply semantic engine reasoners to infer new knowledge about the network. The second step of the dissertation deals with the minimization of the usage of every node in a WSN. The main purpose of each node is to collect environmental data and to exchange hem with other nodes. To minimize battery consumption, it is necessary to limit the radio usage. Therefore, we implemented Razor, a new lightweight algorithm which is expected to improve data compression and classification by leveraging on the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. Data compression is performed studying the well-know Vector Quantization (VQ) theory in order to create the codebooks necessary for signal compression. At the same time, it is requested to give a semantic meaning to un- known signals. In this way, the codebook feature is able not only to compress the signals, but also to classify unknown signals. Razor is compared with both state-of-the-art compression and signal classification techniques for WSN . The third part of the thesis covers the concept of smart object applied to Robotic research. A critical issue is how a robot can localize and retrieve smart objects in a real scenario without any prior knowledge. In order to achieve the objectives, it is possible to exploit the smart object concept and localize them through RSSI measurements. After the localization phase, the robot can exploit its own camera to retrieve the objects. Several filtering algorithms are developed in order to mitigate the multi–path issue due to the wireless communication channel and to achieve a better distance estimation through the RSSI measurement. The last part of the dissertation deals with the design and the development of a Cognitive Network (CN) testbed using off the shelf devices. The device type is chosen considering the cost, usability, configurability, mobility and possibility to modify the Operating System (OS) source code. Thus, the best choice is to select some devices based on Linux kernel as Android OS. The feature to modify the Operating System is required to extract the TCP/IP protocol stack parameters for the CN paradigm. It is necessary to monitor the network status in real-time and to modify the critical parameters in order to improve some performance, such as bandwidth consumption, number of hops to exchange the data, and throughput

    Cooperative Relative Positioning for Vehicular Environments

    Get PDF
    Fahrerassistenzsysteme sind ein wesentlicher Baustein zur Steigerung der Sicherheit im Straßenverkehr. Vor allem sicherheitsrelevante Applikationen benötigen eine genaue Information über den Ort und der Geschwindigkeit der Fahrzeuge in der unmittelbaren Umgebung, um mögliche Gefahrensituationen vorherzusehen, den Fahrer zu warnen oder eigenständig einzugreifen. Repräsentative Beispiele für Assistenzsysteme, die auf eine genaue, kontinuierliche und zuverlässige Relativpositionierung anderer Verkehrsteilnehmer angewiesen sind, sind Notbremsassitenten, Spurwechselassitenten und Abstandsregeltempomate. Moderne Lösungsansätze benutzen Umfeldsensorik wie zum Beispiel Radar, Laser Scanner oder Kameras, um die Position benachbarter Fahrzeuge zu schätzen. Dieser Sensorsysteme gemeinsame Nachteile sind deren limitierte Erfassungsreichweite und die Notwendigkeit einer direkten und nicht blockierten Sichtlinie zum Nachbarfahrzeug. Kooperative Lösungen basierend auf einer Fahrzeug-zu-Fahrzeug Kommunikation können die eigene Wahrnehmungsreichweite erhöhen, in dem Positionsinformationen zwischen den Verkehrsteilnehmern ausgetauscht werden. In dieser Dissertation soll die Möglichkeit der kooperativen Relativpositionierung von Straßenfahrzeugen mittels Fahrzeug-zu-Fahrzeug Kommunikation auf ihre Genauigkeit, Kontinuität und Robustheit untersucht werden. Anstatt die in jedem Fahrzeug unabhängig ermittelte Position zu übertragen, werden in einem neuartigem Ansatz GNSS-Rohdaten, wie Pseudoranges und Doppler-Messungen, ausgetauscht. Dies hat den Vorteil, dass sich korrelierte Fehler in beiden Fahrzeugen potentiell herauskürzen. Dies wird in dieser Dissertation mathematisch untersucht, simulativ modelliert und experimentell verifiziert. Um die Zuverlässigkeit und Kontinuität auch in "gestörten" Umgebungen zu erhöhen, werden in einem Bayesischen Filter die GNSS-Rohdaten mit Inertialsensormessungen aus zwei Fahrzeugen fusioniert. Die Validierung des Sensorfusionsansatzes wurde im Rahmen dieser Dissertation in einem Verkehrs- sowie in einem GNSS-Simulator durchgeführt. Zur experimentellen Untersuchung wurden zwei Testfahrzeuge mit den verschiedenen Sensoren ausgestattet und Messungen in diversen Umgebungen gefahren. In dieser Arbeit wird gezeigt, dass auf Autobahnen, die Relativposition eines anderen Fahrzeugs mit einer Genauigkeit von unter einem Meter kontinuierlich geschätzt werden kann. Eine hohe Zuverlässigkeit in der longitudinalen und lateralen Richtung können erzielt werden und das System erweist 90% der Zeit eine Unsicherheit unter 2.5m. In ländlichen Umgebungen wächst die Unsicherheit in der relativen Position. Mit Hilfe der on-board Sensoren können Fehler bei der Fahrt durch Wälder und Dörfer korrekt gestützt werden. In städtischen Umgebungen werden die Limitierungen des Systems deutlich. Durch die erschwerte Schätzung der Fahrtrichtung des Ego-Fahrzeugs ist vor Allem die longitudinale Komponente der Relativen Position in städtischen Umgebungen stark verfälscht.Advanced driver assistance systems play an important role in increasing the safety on today's roads. The knowledge about the other vehicles' positions is a fundamental prerequisite for numerous safety critical applications, making it possible to foresee critical situations, warn the driver or autonomously intervene. Forward collision avoidance systems, lane change assistants or adaptive cruise control are examples of safety relevant applications that require an accurate, continuous and reliable relative position of surrounding vehicles. Currently, the positions of surrounding vehicles is estimated by measuring the distance with e.g. radar, laser scanners or camera systems. However, all these techniques have limitations in their perception range, as all of them can only detect objects in their line-of-sight. The limited perception range of today's vehicles can be extended in future by using cooperative approaches based on Vehicle-to-Vehicle (V2V) communication. In this thesis, the capabilities of cooperative relative positioning for vehicles will be assessed in terms of its accuracy, continuity and reliability. A novel approach where Global Navigation Satellite System (GNSS) raw data is exchanged between the vehicles is presented. Vehicles use GNSS pseudorange and Doppler measurements from surrounding vehicles to estimate the relative positioning vector in a cooperative way. In this thesis, this approach is shown to outperform the absolute position subtraction as it is able to effectively cancel out common errors to both GNSS receivers. This is modeled theoretically and demonstrated empirically using simulated signals from a GNSS constellation simulator. In order to cope with GNSS outages and to have a sufficiently good relative position estimate even in strong multipath environments, a sensor fusion approach is proposed. In addition to the GNSS raw data, inertial measurements from speedometers, accelerometers and turn rate sensors from each vehicle are exchanged over V2V communication links. A Bayesian approach is applied to consider the uncertainties inherently to each of the information sources. In a dynamic Bayesian network, the temporal relationship of the relative position estimate is predicted by using relative vehicle movement models. Also real world measurements in highway, rural and urban scenarios are performed in the scope of this work to demonstrate the performance of the cooperative relative positioning approach based on sensor fusion. The results show that the relative position of another vehicle towards the ego vehicle can be estimated with sub-meter accuracy in highway scenarios. Here, good reliability and 90% availability with an uncertainty of less than 2.5m is achieved. In rural environments, drives through forests and towns are correctly bridged with the support of on-board sensors. In an urban environment, the difficult estimation of the ego vehicle heading has a mayor impact in the relative position estimate, yielding large errors in its longitudinal component
    corecore