87 research outputs found

    Monitoring the critical newborn:Towards a safe and more silent neonatal intensive care unit

    Get PDF

    A Computational Framework to Support the Automated Analysis of Routine Electroencephalographic Data

    Get PDF
    Epilepsy is a condition in which a patient has multiple unprovoked seizures which are not precipitated by another medical condition. It is a common neurological disorder that afflicts 1% of the population of the US, and is sometimes hard to diagnose if seizures are infrequent. Routine Electroencephalography (rEEG), where the electrical potentials of the brain are recorded on the scalp of a patient, is one of the main tools for diagnosing because rEEG can reveal indicators of epilepsy when patients are in a non-seizure state. Interpretation of rEEG is difficult and studies have shown that 20-30% of patients at specialized epilepsy centers are misdiagnosed. An improved ability to interpret rEEG could decrease the misdiagnosis rate of epilepsy. The difficulty in diagnosing epilepsy from rEEG stems from the large quantity, low signal to noise ratio (SNR), and variability of the data. A usual point of error for a clinician interpreting rEEG data is the misinterpretation of PEEs (paroxysmal EEG events) ( short bursts of electrical activity of high amplitude relative to the surrounding signals that have a duration of approximately .1 to 2 seconds). Clinical interpretation of PEEs could be improved with the development of an automated system to detect and classify PEE activity in an rEEG dataset. Systems that have attempted to automatically classify PEEs in the past have had varying degrees of success. These efforts have been hampered to a large extent by the absence of a \gold standard\u27 data set that EEG researchers could use. In this work we present a distributed, web-based collaborative system for collecting and creating a gold standard dataset for the purpose of evaluating spike detection software. We hope to advance spike detection research by creating a performance standard that facilitates comparisons between approaches of disparate research groups. Further, this work endeavors to create a new, high performance parallel implementation of ICA (independent component analysis), a potential preprocessing step for PEE classification. We also demonstrate tools for visualization and analysis to support the initial phases of spike detection research. These tools will first help to develop a standardized rEEG dataset of expert EEG interpreter opinion with which automated analysis can be trained and tested. Secondly, it will attempt to create a new framework for interdisciplinary research that will help improve our understanding of PEEs in rEEG. These improvements could ultimately advance the nuanced art of rEEG interpretation and decrease the misdiagnosis rate that leads to patients suering inappropriate treatment

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Towards designing AI-aided lightweight solutions for key challenges in sensing, communication and computing layers of IoT: smart health use-cases

    Get PDF
    The advent of the 5G and Beyond 5G (B5G) communication system, along with the proliferation of the Internet of Things (IoT) and Artificial Intelligence (AI), have started to evolve the vision of the smart world into a reality. Similarly, the Internet of Medical Things (IoMT) and AI have introduced numerous new dimensions towards attaining intelligent and connected mobile health (mHealth). The demands of continuous remote health monitoring with automated, lightweight, and secure systems have massively escalated. The AI-driven IoT/IoMT can play an essential role in sufficing this demand, but there are several challenges in attaining it. We can look into these emerging hurdles in IoT from three directions: the sensing layer, the communication layer, and the computing layer. Existing centralized remote cloud-based AI analytics is not adequate for solving these challenges, and we need to emphasize bringing the analytics into the ultra-edge IoT. Furthermore, from the communication perspective, the conventional techniques are not viable for the practical delivery of health data in dynamic network conditions in 5G and B5G network systems. Therefore, we need to go beyond the traditional realm and press the need to incorporate lightweight AI architecture to solve various challenges in the three mentioned IoT planes, enhancing the healthcare system in decision making and health data transmission. In this thesis, we present different AI-enabled techniques to provide practical and lightweight solutions to some selected challenges in the three IoT planes

    Anomaly Detection in IoT: Recent Advances, AI and ML Perspectives and Applications

    Get PDF
    IoT comprises sensors and other small devices interconnected locally and via the Internet. Typical IoT devices collect data from the environment through sensors, analyze it and act back on the physical world through actuators. We can find them integrated into home appliances, Healthcare, Control systems, and wearables. This chapter presents a variety of applications where IoT devices are used for anomaly detection and correction. We review recent advancements in Machine/Deep Learning Models and Techniques for Anomaly Detection in IoT networks. We describe significant in-depth applications in various domains, Anomaly Detection for IoT Time-Series Data, Cybersecurity, Healthcare, Smart city, and more. The number of connected devices is increasing daily; by 2025, there will be approximately 85 billion IoT devices, spreading everywhere in Manufacturing (40%), Medical (30%), Retail, and Security (20%). This significant shift toward the Internet of Things (IoT) has created opportunities for future IoT applications. The chapter examines the security issues of IoT standards, protocols, and practical operations and identifies the hazards associated with the existing IoT model. It analyzes new security protocols and solutions to moderate these challenges. This chapter’s outcome can benefit the research community by encapsulating the Information related to IoT and proposing innovative solutions
    • …
    corecore