24,408 research outputs found

    Relying on storage or ICT? How to maintain low voltage grids' stability with an increasing feed-in of fluctuating renewable energy sources

    Get PDF
    Since the beginning of the new century our electricity system is changing rapidly. Distributed energy resources, such as wind or solar energies are becoming more and more important. These energies are producing fluctuating electricity, which is fed into low voltage distribution grids. The resulting volatility complicates the exact balancing of demand and supply. These changes can lead to distribution grid instabilities, damages of electronic devices or even power outages and might therefore end in deadweight losses affecting all electricity users. A concept to tackle this challenge is matching demand with supply in real-time, which is known as smart grids. In this study, we focus on two smart grids' key components: decentralized electricity storages and smart meters. The aim of this study is to provide new insights concerning the low diffusion of smart meters and decentralized electricity storages and to examine whether we are facing situations of positive externalities. During our study we conducted eight in-depth expert interviews. Our findings show that the diffusion of smart meters as well as decentralized electricity storages is widely seen as beneficial to society. This study identifies the most important stakeholders and various related private costs and benefits. As private benefits are numerous but widely distributed among distinct players, we argue that we face situations of positive externalities and thus societal desirable actions are omitted. We identify and discuss measures to foster diffusion of the two studied smart grid key components. Surprisingly, we find that direct interventions like subsidies are mostly not seen as appropriate even by experts from industries that would directly benefit from them. As the most important point, we identified well-designed and clearly defined regulatory and legal frameworks that are free of contradictions. --smart meter,decentralized electricity storage,smart grid,externality

    Climate Resilient & Equitable Water Systems Capital Scan

    Get PDF
    Climate change is affecting water supply, water management and the health of communities in U.S. cities. Changes in the timing, frequency and intensity of precipitation are placing stress on the built and natural systems that provide fresh water, manage storm water, and treat wastewater. Droughts are shrinking the water supply; heavy rainfall overburdens storm water systems, causing flooding in homes and neighborhoods. Low-income people and communities of color are often the most vulnerable to climate change, living in low-lying areas and lacking the resources to adapt and cope with challenges associated with these patterns.The cumulative impact of climate change on water resources not only leads to a reduction in water quality and the destruction of homes and property, but it can also be a threat to public health, force relocation of communities and cause economic harm.The vision of Kresge's Environment Program is to help communities build resilience in the face of climate change. We believe that cities are central to action on climate change and equity must be a fundamental part of our work in climate adaptation, climate mitigation and building social cohesion

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process
    • …
    corecore